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1. INTRODUCTION

This paper revisits the question of how shocks to expectations of market participants can cause

business cycle fluctuations (see, e.g., Beaudry and Portier, 2006; 2014). We build upon the empirical

framework of Enders et al. (2021) who discuss the identification of belief shocks. Usually, expectations

about variables enter theoretical models as expected values conditional on some information set. In

empirical models, they are often operationalized as mean-based predictions. That is, they are summary

statistics of predictive distributions. This potentially disregards higher-order moments and abstracts

from implied judgements of economic agents about macroeconomic risks.1

We diverge partly from the related literature and explicitly leverage full predictive distributions.

Our first contribution is to replicate the findings of Enders et al. (2021), which are based on using

the median consensus nowcast for US real gross domestic product (GDP) growth from the Survey of

Professional Forecasters (SPF). They use this data to compute nowcast errors (NEs, defined as the

difference between realized output growth and nowcasts). Their identification scheme then discrim-

inates between belief and non-belief shocks via sign restrictions in a vector autoregression (VAR).

They impose the belief shock to induce negative co-movement between output and NEs, while the

non-belief shocks cause positive co-movement. This reflects the notion that a favorable belief shock

(e.g., an overly optimistic outlook due to noisy signals observed by markets) shifts predictions beyond

actual growth. This results in a negative NE while increasing output growth.

The second contribution is to move beyond the point prediction and recover the probabilistic

distribution of nowcasted output growth in the US. This aspect of our work is motivated by the recent

interest in macroeconomic (tail) risk due to the influential paper by Adrian et al. (2019). A common

definition of macroeconomic risk is to consider the conditional quantiles of some underlying series of

interest. The quantiles of output growth, for instance, are referred to as growth-at-risk (GaR) at some

pre-defined probability. Related work finds time-varying macroeconomic risk to be at least partly

predictable (see, e.g., Adams et al., 2021; Clark et al., 2023).

Evaluating and processing nowcasts of tail risk comes with two main challenges. First, the SPF

does not contain probabilistic predictions in a format required for our analysis. Our solution is to

rely on the ensemble methods proposed by Krüger and Nolte (2016) to recover the implied predictive

distribution from individual point forecasts of SPF participants. Second, the quantiles of the dynamic

process governing output growth are not observed. Here, we rely on time-varying parameter quantile

1 The literature investigating belief distortions/wedges or disagreement usually focuses on mean outcomes and the cross-
sectional dispersion of beliefs or expectations (Lahiri and Sheng, 2010; Dovern et al., 2012; Adam et al., 2021; Bianchi
et al., 2022; Bhandari et al., 2022; Boeck, 2023; Born et al., 2023; Pei, 2024).
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regression (TVP-QR, see e.g., Pfarrhofer, 2022) to estimate the real-time quantiles of output growth

(see Loria et al., 2024, for a related approach). These two ingredients are used to compute reduced

form GaR-NEs (which measure an inaccurate assessment of potential best/worst-case scenarios about

the economic outlook; in this context, see e.g., the Federal Reserve Bank of New York Outlook-at-Risk

dashboard), which we then employ to study the dynamic effects of belief shocks.

Our empirical results can be summarized as follows. First, we demonstrate the replicability of

the results of Enders et al. (2021) in a narrow sense. Replicability in this context refers to extending the

sampling period and considering alternative specifications in addition to the original implementations.

Second, in a wide sense, we investigate whether belief shocks about GaR induce distinct business cycle

fluctuations. The answer to this question is no. Indeed, we find very similarly shaped responses. This

is true both when comparing our quantile-based estimates to the original framework, but also, when

we compare, e.g., downside to upside risk. We conjecture that this is because the nowcast distribution

of output growth, which we recover from the SPF, turns out to be rather symmetric for most of the

sample. This relates to the nowcast (rather than forecast) setting, where the latter is usually the focus

of studies about macroeconomic risk. Although the differences are statistically insignificant, belief

shocks about downside risk seem to produce somewhat sharper business cycle fluctuations.

The paper proceeds as follows. In Section 2 we describe the SPF data, the original framework to

extract belief shocks, and our extensions to recovering a suitable probabilistic predictive distribution.

Section 3 discusses the VAR framework and identification procedure for belief shocks, before moving

on to our main empirical results. Section 4 concludes.

2. SURVEY- AND NOWCAST DISTRIBUTIONS

2.1. The Survey of Professional Forecasters

Predictions about the current state of the economy lie at the heart of our paper. The SPF is a quarterly

survey of such macroeconomic predictions, maintained by the Federal Reserve Bank of Philadelphia.

It collects projections, from a changing panel of participants, which are submitted in form of a single

number which is the point forecast of the target variable by the respective forecaster. For many

applications, it is sufficient to aggregate these by computing the mean or median consensus prediction

at any given point in time for any desired forecast horizon. This produces a sequence of (point)

forecasts and yields a single time series based on an equal-weighted combination. Indeed, this is the

default format for downloading SPF data, and what Enders et al. (2021) use in their original paper.
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In our paper, as an extension, we intend to identify belief shocks related to the full predictive

distribution. They are extracted from NEs about GaR. While the SPF in principle collects probabilistic

forecasts, these come in the form of probability bins for a specific horizon and transformation of output,

which we thus cannot use for our purposes. For this reason, we recover nowcast distributions from

point predictions of individual forecasters as follows. Suppose that the predictive density y
(f,i)
t of

forecaster i at time t has mean µit and variance ς2it. We observe the point prediction µit (made at time

t, when realizations were not yet available because GDP is released with a lag) of individual forecaster

i = 1, . . . , Nt, but we do not observe the variance ς2it.

Due to the design of the SPF, with coverage and number of forecasters Nt varying over time, we

aim to construct an ensemble forecast using participants that are exchangeable. Define the average

mean forecast µt = N−1
t

∑Nt
i=1 µit and forecaster disagreement s2t = (Nt − 1)−1

∑Nt
i=1 (µit − µt)

2 as the

cross-sectional mean and variance of the point predictions across all survey forecasts. What is missing

here is the unpredictable randomness (encoded in ς2it) of the target series surrounding the nowcasts.

To solve this issue, we follow Krüger and Nolte (2016) and use an ensemble method, which has been

shown to work well for the SPF.

In particular, we assume that the ensemble nowcast distribution y
(f)
t can be written as an

equal-weighted mixture of Gaussians with a common (but unknown) variance:

y
(f)
t =

1

Nt

Nt∑
i=1

N
(
µit, ς

2
)
, (1)

where ς2 is the sole parameter to be estimated. Note that this implies that the joint forecast distribu-

tion y
(f)
t has a mean equal to the average across forecasters, µt, and its variance is given by ς2t = s2t+ς2.

The first variance component measures dispersion over the cross-section of forecasters, while the second

reflects the unpredictable part of GDP. Note that even though the individual components in the sum of

Eq. (1) are Gaussian, the mixture allows for nowcast distributions with highly non-Gaussian features

such as skewness, multi-modality or heavier-than-normal tails (see, e.g., Frühwirth-Schnatter, 2006,

for a detailed discussion). Estimates for ς2 are obtained from a rolling window of τ = 12 quarters,

i.e., three years worth of quarterly nowcasts. We optimize the parameter using the continuous ranked

probability score (CRPS) as predictive loss that we seek to minimize for the pool of forecasters.2

2 The CRPS (f(•|θ), w) =
∫∞
−∞ (F (z|θ)− I(w ≤ z))2 dz, where f(•|θ) refers to the probability density function of some

distribution with parameter vector θ, F (z|θ) =
∫ z

−∞ f(w|θ)dw is the corresponding cumulative distribution function,
and w is the realized value. In our application, f(•|θ) is a Gaussian such that θ comprises a known mean and unknown
variance. See Gneiting and Ranjan (2011) for details and a discussion of the favorable properties of the CRPS as a
scoring rule.
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It remains to explicitly define the minimization problem. We use y
(r)
t to denote the real-time

realization of GDP growth and assume normally distributed nowcasts, in line with Eq. (1): ς̂2τ =

minς2
(∑τ−1

t=(τ−w)

∑Nt
i=1CRPS

(
N (µit, ς

2), y
(r)
t

))
. Moving the rolling window forward yields a sequence

of estimates ς̂2t . Two features are worth mentioning. First, this introduces time-varying variances, as

we have estimates for each t, and w governs the persistence of these estimates. Second, even though

the ς̂2t ’s are dated at time t, we only use information up to t− 1 (i.e., we do not mix information sets).

We may use this procedure to obtain Monte Carlo samples or quantiles from the ensemble predictive

distribution in Eq. (1):

1

Nt

Nt∑
i=1

N (µit, ς̂
2
t ). (2)

Indeed, this is how we obtain the full predictive distribution of the SPF ensemble nowcast whose pth

quantile, y
(f)
pt , is the ensemble nowcast for GaR at quantile p at time t. The consensus nowcast is

given by y
(f)
t = µt.

2.2. Estimating real-time quantiles of output growth

The final challenge is that the true quantiles of output growth are not observed. Each observation of

GDP is just a single realization of an underlying stochastic process, and comparing these realizations to

our GaR expectations is futile. Next, we thus discuss how we estimate the real-time latent quantiles of

the GDP growth process, which we require to compute NEs quantile-by-quantile (by contrast, having

access to explicit measures of quantiles is not necessary when the focus is on out-of-sample predictive

inference and designing scoring rules used for model selection, see, e.g., Gneiting and Ranjan, 2011).

Our baseline framework is similar to Loria et al. (2024); i.e., to estimate the unobserved quantiles

of output, we use a variant of quantile regression. In particular, given its substantial degree of

flexibility, our implementation is based on a Bayesian time-varying parameter quantile regression

(TVP-QR) as in Pfarrhofer (2022). Let {yt}Tt=1 denote a scalar dependent variable, {xt}Tt=1 comprises

K predictors at time t = 1, . . . , T, and qp(xt) = x′
tβpt is the pth quantile function of yt given xt for

p ∈ (0, 1). We use a model of the form yt = x′
tβpt+ εt with

∫ 0
−∞ fp(εt)dεt = p, i.e., the pth quantile of

the error distribution f(•) is equal to zero. Specifically, we assume εt to follow an asymmetric Laplace

(AL) distribution with scale σ2
p. The βpt’s are quantile-specific vectors of size K × 1 which collect the

parameters that vary over time. We assume an independent random walk state equation for each of

these parameters and rely on a dynamic shrinkage prior for regularization.
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This framework consists of two crucial ingredients. First, it allows coefficients to vary at quantile

p, allowing for heterogeneous effects across specific parts of the distribution of yt. Second, the mag-

nitudes of these effects are allowed to vary over time. The former reflects the literature on measuring

tail risks of GDP growth, following Adrian et al. (2019), while the latter allows for another layer

of nonlinearity that has been found to improve accuracy (see, e.g., the corresponding discussion in

Clark et al., 2024). The target variable yt is the respective first released vintage of the annualized

growth rate of real GDP. This data is from the Real-Time Data Set for Macroeconomists. We choose

these vintages such that our target variable is as close as possible to the conceptual variable that the

participants of the SPF were asked to forecast at the time.

Our vector of predictors contains Q common factors ft that drive economic fluctuations in the

US economy. In particular, we use a macroeconomic real-time dataset of 80 variables such that it

resembles the potential information set a forecaster of the SPF has access to.3 We extract extract

Q = 4 factors following Stock and Watson (2002). Additionally, we add lags of the National Financial

Conditions Index (NFCI), labeled zt, which has been identified as an important variable that shifts

the quantiles of GDP, lags of the dependent variable and an intercept term. We use P = 4 lags such

that xt = (1, yt−1, . . . , yt−P , zt−1, . . . , zt−P ,f
′
t−1, . . . ,f

′
t−P )

′.

Running our algorithm produces estimates for the quantiles of GDP growth for each point in

time, i.e., the fitted “realized” values ŷ
(r)
pt = x′

tβpt, which we interpret as the best possible estimate of

the true real-time quantile (we stress that these quantiles are subject to potential measurement errors,

and some of our results below thus must be interpreted with caution). Note that our procedure is

based on an expanding window of observations, such that the information sets of the quantile model

and the one available to the SPF forecasters is consistent. Our implementation is fully Bayesian, which

implies that we obtain a posterior distribution for the fitted quantiles. We summarize this distribution

by taking the posterior median at a particular quantile of interest.

2.3. Empirical estimates for growth-at-risk nowcast errors

Our full sample runs from 1968Q4 to 2019Q4. Figure 1 shows real GDP growth and the quantiles

estimated with TVP-QR in the upper panel. The shaded areas range between the 10th and 90th

percentiles. The solid line is actual GDP growth, while the dashed line indicates the 50th percentile

estimated using TVP-QR. The lower panel is a chart of the SPF nowcast distribution. The shaded

area again reflects the 80 percent credible set, “Median” indicates the default SPF aggregation as used

3 The dataset is described in more detail in the Appendix B. Our results are robust to relying on the most recent
data vintage of the FRED-QD database. In this case, we explicitly exploit the most recently available information to
measure the quantiles of the first release vintage of GDP for each period.
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Fig. 1: Real GDP growth, estimated quantiles and SPF nowcast distribution. Shaded areas show the
10th and 90th percentiles around the median; “Median” refers to the default SPF.

in Enders et al. (2021) whereas “Ensemble” is the point nowcast arising from using the methods of

Krüger and Nolte (2016) as described above. These two approaches coincide for the mean/median,

but our implementation yields a full predictive distribution.

Next, we formally define the versions of NEs that we consider descriptively and in our structural

application. We previously denoted the consensus nowcast with y
(f)
t and the realization as y

(r)
t . These

serve as the basis for the variant that replicates Enders et al. (2021). Recall that our estimates from

TVP-QR yield the quantile-based counterpart for observed GDP, ŷ
(r)
pt , and that the quantiles of the

distribution in Eq. (2) define our SPF nowcast of the pth quantile, y
(f)
pt . The NEs are:

net = y
(r)
t − y

(f)
t , (3)

nept = ŷ
(r)
pt − y

(f)
pt . (4)

We purge the NEs of any remaining predictable components by running ARIMA models with

automatic lag selection.4 Figure 2 shows the resulting NEs; “Actual” refers to those for the consensus

nowcast and actual GDP observations, as in Eq. (3), while the colored lines mark those for GaR at the

indicated quantile based on Eq. (4). The baseline NEs are identical (up to a scaling factor) to those

shown in Figure 1 of Enders et al. (2021). The dynamics of our quantile-based versions are similar.

Indeed, all our versions of NEs are positively correlated at varying strengths (additional results are

provided in the Online Appendix). For the median, the correlation exceeds 0.8 and we conclude that

our framework to extract quantile-based nowcast errors yields reasonable results.

4 For some quantiles the NEs exhibit a modest amount of persistence, which we eliminate with this procedure. We also
estimated the VAR model in Section 3 without purging the NEs from predictable components. In this case, the main
results for output are very similar, but there is some persistence in the responses of the nowcast errors.
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Fig. 2: NEs computed with actual realizations of real GDP growth and the indicated selected GaR
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3. BELIEF SHOCKS AND THEIR EFFECTS ON THE BUSINESS CYCLE

We now turn to the specification and identification of the structural VAR that we use to recover

dynamic causal effects of belief shocks. This section contains the main empirical results: those for our

narrow replication of the original implementation and our extension focusing on nowcasts about GaR.

3.1. The vector autoregression and identification

As laid out in Enders et al. (2021), belief shocks can be extracted from the NE. We use a bivariate

VAR that features the NE (net for the plain version, and nept when we consider GaR) and output,

labeled yt, as endogenous variables. We stack these in the vector xt = (net, yt)
′ and estimate the

following reduced form VAR:

xt =

P∑
l=1

Alxt−l +Bdt + ut, ut ∼ N (0,Σ) , (5)

Al is the dynamic coefficient matrix for lag l = 1, . . . , P, B comprises the parameters associated with

deterministic components dt = (1, t, t2)′ and ut = (une,t, uy,t)
′ are reduced form errors following a

multivariate Gaussian distribution with zero mean and covariance matrix Σ. The structural belief

(b) and non-belief (nb) shocks comprise the vector ϵt = (ϵnb,t, ϵb,t)
′. They are uncorrelated and their

variance is normalized such that ϵt ∼ N (0, I). To achieve identification, we need to pin down the

elements of the matrix A0, which maps structural shocks to reduced form innovations ut = A0ϵt.

This implies that Σ = A0A
′
0 and presents a well-known identification problem.

Further restrictions are necessary to give economic meaning to our structural shocks, which we

introduce as follows. The belief shock causes a negative co-movement between the nowcast error and
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Fig. 3: Impulse response functions to a non-belief and belief shock.

Notes: Estimation of bivariate Bayesian VAR(4) identified with sign restrictions. Solid black lines are posterior median responses,

while gray shaded areas depict the 68/80/90 percent credible sets of the flat prior version of this model. NEs and output are measured

in deviations from trend in percentage points. Dashed and dotted lines refer to posterior medians of alternative specifications.

output, because a negative (positive) nowcast error means that the consensus survey expectation of

growth is higher (lower) than current output growth in real-time. Hence, agents are overly optimistic

which causes an outward (inward) shift of the demand curve and subsequently output increases (de-

creases). The non-belief shock differs from the belief shock insofar as it causes co-movement between

the nowcast error and output. This gives rise to sign restrictions on the elements of A0:une,t
uy,t

 =

+ +

+ −


ϵnb,t
εb,t

 ,

which set-identifies the structural shocks. For estimation and structural inference we rely on Bayesian

methods. We use variants of Bayesian VARs with weakly informative Minnesota-type priors, and

alternative implementations are noted when applicable. We use a Gibbs sampler and draw 15,000

times from the posterior distribution while discarding the first 5,000 draws as burn-in. For the sign

restrictions, we rely on the algorithm proposed by Rubio-Ramirez et al. (2010).5

3.2. Revisiting the original belief shocks

We replicate the main findings of Enders et al. (2021) and corroborate their results along several

dimensions. First, we consider two sampling periods. Specifically, we apply our framework to the

5 This algorithm is based on a QR decomposition to draw uniformly from the space of orthonormal matrices to construct
A0 that satisfies the sign restriction. The original implementation of Enders et al. (2021) uses Givens rotation matrices
to draw uniformly from the space of orthonormal matrices. Hence, these approaches draw from the same space of
orthonormal matrices to construct A0. An alternative approach that introduces identification information via explicit
priors is due to Baumeister and Hamilton (2015).
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original sample which ranges from 1968Q4 to 2014Q4, but also use an extended version which runs

through 2019Q4.6 Second, we consider different specifications of the VARs. On the one hand, we vary

the number of lags P ∈ {2, 4, 6}. On the other hand, we consider both a flat prior (for the “exact”

replication of Enders et al., 2021) and the weakly informative prior implementation mentioned above.7

Impulse response functions are computed for a horizon of 20 quarters and shown in Figure 3

for the respective subsamples in panels (a) and (b). Non-belief and belief shocks are in the respective

left and right columns; the upper rows refer to the NE, while the bottom row depicts the response of

output growth. The recovered dynamic responses are virtually identical to those in Enders et al. (2021,

compare their Figure 5 to our Figure 3(a)), for all considered model specifications. The imposed sign

restrictions result in positive co-movement between the NE and output in response to the non-belief

shock, and negative co-movement for the belief shock on impact. Note that propagation dynamics

are left unconstrained by this identification scheme. The response of the NE is short-lived for both

shocks and insignificant for all horizons apart from the impact. The output-response by contrast is

fairly persistent. Depending on the level of statistical significance, it turns indistinguishable from zero

after about 12 to 15 quarters. A negative NE corresponds to excessively optimistic beliefs. In this

case, survey expectations exceed actual real-time output growth, because agents have an optimistic

outlook. This optimism about current output growth causes actual output growth to increase.

Varying the number of lags and introducing modest shrinkage via a Minnesota-type prior has

minor implications for the persistence of our posterior median estimates. But these differences are

statistically insignificant. Comparing the extended sample in Figure 3(b) to the original period in

Figure 3(a), as in Enders et al. (2021), indicates that this extension has no discernible consequences

for the results. To sum up this narrow replication study, we find that the original results are robust

to alternative specifications and implementations of the baseline econometric framework.

3.3. Nowcast errors about growth-at-risk

In this subsection, we investigate whether nowcast errors about GaR can be used as an alternative re-

duced form measure to identify belief shocks. These nowcast errors can be interpreted as misjudgments

of macroeconomic risk in real-time. The resulting belief shocks potentially differ from the mean-based

ones discussed above (e.g., through fundamental macroeconomic or financial shocks asymmetrically

affecting the objective versus subjective nowcast distribution of output). The empirical findings of

6 We thus estimate the model excluding the post-Covid period. Extending the sample further but downweight-
ing/dropping the pandemic observations (see, e.g., Lenza and Primiceri, 2022) yields qualitatively similar results.

7 Note that Enders et al. (2021) carried out their computations in MATLAB and relied on a frequentist approach to estim-
ation and inference. By contrast, we have independently compiled the dataset, and use a Bayesian VAR implemented
in R. This provides robustness from a data, econometric, and software perspective.
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Fig. 4: Impulse response functions to belief shocks using GaR-NEs.

Notes: Estimation of bivariate Bayesian VAR(4) identified with sign restrictions. Black/red lines denote the posterior median

responses while gray/red shaded areas depict the 68/80/90 percent credible sets. Nowcast error and output are measured in

deviations from trend in percentage points. Responses in black/gray denote the original model of Enders et al. (2021), while the

responses in red denote the impulse responses to the belief shocks arising from the tails of nowcast distributions.

this section thus also relate to those of Loria et al. (2024), who measure quantile-specific responses

of output growth to several fundamental (mean-based or externally identified) macroeconomic and

financial shocks. By contrast, we use the NEs that originate in the quantiles to pin down shocks in a

mean-based linear VAR framework.

Given the robustness of the original results that we established in the preceding section, we limit

ourselves to using the full sample ranging from 1968Q4 to 2019Q4, and use a lag length of P = 4

in the Bayesian VAR. As pointed out earlier, we now use the full predictive distribution from the

SPF and rely on the NEs as defined in Eq. (4) to capture these aspects.8 The main results from

this exercise are presented in Figure 4, in form of the red-colored impulse response functions. The

columns now report the dynamic effects of belief shocks for three different quantiles, p = {0.1, 0.5, 0.9}.

Since the nowcast errors are a reduced form measure, we identify belief shocks via sign restrictions

using measures of downside, median, and upside risk. For ease of reference, the effects measured in

the narrow replication are shown in shades of grey, and the dashed line marks the posterior median

estimate from before.

Peak response effects occur slightly earlier and they are also a bit subdued when compared to

the original framework. But the credible sets are inflated when considering the quantiles, and the

structural VAR yields similar (and statistically indistinguishable) dynamic effects. Overall we thus

8 The NEs are based on real-time predictions of GaR. In a robustness check, we also estimate the true quantile processes
based on full-sample information for the final vintage data of the predictors. The results are robust to this choice.
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conclude that considering belief shocks in different parts of the nowcast distribution does not cause any

noteworthy differences when the focus is on explaining business cycle fluctuations. The mean-based

original implementation is sufficient to induce the characteristic effects which are mostly homogeneous

across GaR quantiles. This corroborates the results of Enders et al. (2021) in a wide sense. And this

finding can, at least in part, be traced back to the notion that SPF nowcasts for output growth in our

sampling period are mostly unimodal and symmetric.

But while differences between effects at different probabilities of GaR are statistically insignific-

ant, some interesting heterogeneity still emerges. For instance, zooming into the belief shock using an

upside risk NE at p = 0.9 we find that the corresponding 90 percent credible set includes zero for all

horizons apart from the impact. It is also worth mentioning that the median response is less clearly

hump-shaped and flatter, particularly when contrasted with the one for downside risk at p = 0.1. This

pattern appears monotonically when transitioning from the upper to the lower quantiles (using finer

grids of GaR).

We again stress that none of these differences are significant in a statistical sense, but they

point towards the notion that the overall effects of belief shocks are at least to some extent driven

by misperceptions about adverse economic dynamics (in the lower tails). This is in line with the

literature on GaR, which has indeed almost exclusively focused on the lower tails of output growth.

Given the linearity of the model, positive and negative shocks yield symmetric effects, so this also

implies a somewhat stronger expansion in response to benign belief shocks about downside risk.

4. CLOSING REMARKS

In this paper we replicate the study of belief shocks and their implications by Enders et al. (2021).

Their results are robust in a narrow sense concerning data sourcing, econometric specification, and

software implementation. In a wide sense, we also investigate whether belief shocks differ when using

nowcast errors from the tails of the nowcast distribution of output growth. Our findings suggest that

the originally proposed approach is sufficient to measure the overall effects of belief shocks on business

cycle fluctuations adequately. Distinct patterns in dynamic responses arising from considering the full

nowcast distribution are negligible for the most part.
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Online Appendix: Belief Shocks and Implications of Expectations about

Growth-at-Risk

A. Additional empirical results

To contrast NEs across quantiles and with the original implementation, we complement these time

series charts with Figure A1, which shows pairwise scatterplots and a density estimate of the uncon-

ditional distribution of the NEs. There is a positive relationship between all considered pairs. In the

left panel, we compare the plain NEs with the corresponding central quantile ones at p = 0.5. The

correlation coefficient ρ is satisfactory for our purposes, with ρ = 0.83. In light of the density chart on

the right-hand side, this value results at least to some extent from heavier tails when using the actual

realizations. Downside risk NEs (p = 0.1) are strongly correlated with those for the median at 0.77.

Interestingly, while p = 0.5 and p = 0.9 (upside risk) are also strongly correlated (not shown here),

this is not the case for the NEs in each of the tails (rightmost scatterplot), with ρ = 0.44.
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Fig. A1: Scatterplot of NEs computed with actual realizations of real GDP growth and the indicated
selected GaR probabilities and density estimates. Grey dashed line indicates 45 degree line while the
blue bold line denotes the regression line in the scatterplots and ρ is the correlation coefficient.

B. Real-Time Database

Table B1 lists all variables we use to extract factors; most are taken from the Real-Time Database for

Macroeconomists of the Federal Reserve of Philadelphia, and we use first vintages. The dataset starts

in 1959Q1. Financial variables (i.e., Interest Rates, Spreads, Foreign Exchanges, and Stock Markets)

are not revised and taken from FRED-QD. If a series is available monthly, we use the end-of-the-

period vintage in each quarter. The column Tcode shows transformations: no transformation (1); first

difference (2); natural logarithm (4); first difference of natural log (5); second difference in logs (6).
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Table B1: Real-Time Macroeconomic Data.

# Mnemonic Description Tcode Starting Date

Output and Income

1 ROUTPUT Real Gross Domestic Product 5 1965Q4

2 NOUTPUT Nominal Gross Domestic Product 5 1965Q4

3 IPT Industrial Production Index: Total 5 1962M11

4 IPM Industrial Production Index: Manufacturing 5 1962M11

5 CUT Capacity Utilization Rate: Total 1 1983M7

6 CUM Capacity Utilization Rate: Manufacturing 1 1979M8

7 WSD Wages and Salary Disbursements 5 1965Q4

8 OLI Other Labor Income 5 1965Q4

9 PROPI Proprietor’s Income 5 1965Q4

10 RENTI Rental Income of Persons 2 1965Q4

11 DIV Dividends 5 1965Q4

12 PINTI Personal Interest Income 5 1965Q4

13 TRANR Transfer Payments 5 1965Q4

14 SSCONTRIB Personal Contribution for Social Insurance 5 1965Q4

15 NPI Nominal Personal Income 5 1965Q4

16 PTAX Personal Tax & Nontax Payments 5 1965Q4

17 NDPI Nominal Disposable Personal Income 5 1965Q4

18 PINTPAID Interest Paid by Consumers 5 1965Q4

19 TRANPF Personal Transfer Payments to Foreigners 5 1965Q4

20 NPSAV Nominal Personal Saving 2 1965Q4

21 RATESAV Personal Saving Rate, Constructed 2 1965Q4

Consumption and Investment

22 RCON Real Personal Consumption Expenditure: Total 5 1965Q4

23 RCONND Real Personal Consumption Expenditure: Nondurable Goods 5 1965Q4

24 RCOND Real Personal Consumption Expenditure: Durable Goods 5 1965Q4

25 RCONS Real Personal Consumption Expenditure: Services 5 1965Q4

26 NCON Nominal Personal Consumption Expenditure 5 1965Q4

27 RINVRESID Real Gross Private Domestic Investment: Residential 5 1965Q4

28 RINVCHI Real Gross Private Domestic Investment: Change in Private

Inventories

2 1965Q4

Trade and Government

29 RNX Real Net Export of Goods and Services 2 1965Q4

30 REX Real Exports of Goods and Services 5 1965Q4

Continued on next page
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Table B1 – Continued from previous page

# Mnemonic Description Tcode First Vintage

31 RIMP Real Import of Goods and Services 5 1965Q4

32 RG Real Government Consumption & Gross Investment: Total 5 1965Q4

33 RGF Real Government Consumption & Gross Investment: Federal 5 1965Q4

34 RGSL Real Government Consumption & Gross Investment: State and

Local

5 1965Q4

Money and Prices

35 M1 M1 Money Stock 6 1965Q4

36 M2 M2 Money Stock 6 1971Q2

37 P Price Index for GNP/GDP 6 1965Q4

38 PCON Price Index for Personal Consumption Expenditure, Construc-

ted

6 1965Q4

39 PIMP Price Index for Imports of Goods and Services 6 1965Q4

Labor Market and Housing

40 RUC Unemployment Rate 2 1965Q4

41 EMPLOY Nonfarm Payroll Employment 5 1964M12

42 H Index of Aggregate Weekly Hours: Total 1 1971M9

43 HG Index of Aggregate Weekly Hours: Goods Sector 1 1971M9

44 HS Index of Aggregate Weekly Hours: Service Sector 1 1971M9

45 HSTARTS Housing Starts 5 1968M2

Interest Rates and Spreads

46 FEDFUNDS Effective Federal Funds Rate 1 1959Q1

47 TB3MS 3-Months Treasury Bill: Secondary Market Rate 1 1959Q1

48 TB6MS 6-Months Treasury Bill: Secondary Market Rate 1 1959Q1

49 GS1 1-Year Treasury Constant Maturity Rate 1 1959Q1

50 GS5 5-Year Treasury Constant Maturity Rate 1 1959Q1

51 GS10 10-Year Treasury Constant Maturity Rate 1 1959Q1

52 MORTGAGE30US 30-Year Conventional Mortgage Rate 1 1959Q1

53 AAA Moody’s Seasoned Aaa Corporate Bond Yield 1 1959Q1

54 BAA Moody’s Seasoned Baa Corporate Bond Yield 1 1959Q1

55 BAA10Y BAA - GS10 1 1959Q1

56 MORTG10YR BAA - MORTGAGE30US 1 1959Q1

57 TB6M3M TB6MS - TB3MS 1 1959Q1

58 GS1TB3M GS1 - TB3MS 1 1959Q1

59 GS10TB3M GS10 - TB3MS 1 1959Q1

60 CPF3MTB3M 3-Month Commercial Paper Minus 3-Month Treasury Bill 1 1959Q1

Continued on next page
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Table B1 – Continued from previous page

# Mnemonic Description Tcode First Vintage

61 TB3SMFFm TB3MS - FEDFUNDS 1 1959Q1

62 T5YFFM GS5 - FEDFUNDS 1 1959Q1

63 AAAFFM AAA - FEDFUNDS 1 1959Q1

64 CP3M 3-Months AA Financial Commercial Paper Rate 1 1959Q1

65 COMPAPFF 3-Month Commercial Paper Minus Federal Funds Rate 1 1959Q1

Foreign Exchange Rates

66 TWEXMMTH Trade Weighted U.S. Dollar Index: Major Currencies 5 1959Q1

67 EXUSEU U.S. / Euro Foreign Exchange Rate (U.S. Dollars to One Euro) 5 1959Q1

68 EXSZUS Switzerland / U.S. Foreign Exchange Rate 5 1959Q1

69 EXJPUS Japan / U.S. Foreign Exchange Rate 5 1959Q1

70 EXUSUK U.S. / U.K. Foreign Exchange Rate 5 1959Q1

71 EXCAUS Canada / U.S. Foreign Exchange Rate 5 1959Q1

Stock Markets

72 UMCSENT University of Michigan: Consumer Sentiment 1 1959Q1

73 USEPUINDXM Economic Policy Uncertainty Index for United States 2 1959Q1

74 VXOCLS CBOE S&P100 Volatility Index 1 1959Q1

75 NIKKEI225 Nikkei Stock Average 5 1959Q1

76 NASDAQCOM NASDAQ Composite Index 5 1959Q1

77 S&P 500 S&P’s Common Stock Price Index: Composite 5 1959Q1

78 S&P: indust S&P’s Common Stock Price Index: Industrials 5 1959Q1

79 S&P: div yield S&P’s Common Stock Price Index: Dividend Yield 2 1959Q1

80 S&P PE ratio S&P’s Common Stock Price Index: Price-Earnings Ratio 5 1959Q1
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