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Abstract

This document introduces the R package BGVAR to estimate Bayesian global vector
autoregressions (GVAR) with shrinkage priors and stochastic volatility. The Bayesian
treatment of GVARs allows to include large information sets by mitigating issues related
to overfitting. This often improves inference as well as out-of-sample forecasts. Compu-
tational efficiency is achieved by using C++ to considerably speed up time-consuming
functions. To maximize usability, the package includes numerous functions for carrying
out structural inference and forecasting. These include generalized and structural impulse
response functions, forecast error variance, and historical decompositions as well as con-
ditional forecasts.
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1. Introduction

Today’s world is characterized by high degrees of trade and financial integration: Firms
diversify production and investment across domestic and foreign locations, capital flows are
unrestricted, and business cycles strongly correlated. As a consequence, econometric models
that treat countries as isolated entities may miss important information for forecasting and
counterfactual analysis. Such concerns do not arise with global vector autoregressive (GVAR)
models since these estimate the intensity of cross-unit correlation using a global system of
equations approach. This for estimating the effects of a local shock to the remaining units
in the system. In fact, this kind of spillover analysis is the predominant application of the
GVAR framework (Chudik and Pesaran 2016).
The GVAR framework was originally proposed in Pesaran, Schuermann, and Weiner (2004)
and consists of two steps: In the first step, small-scale unit-specific models are estimated
conditional on the remaining units in the sample. These units can be countries, regions,
companies or individuals. In the second step, the estimated parameters of these local models
are stacked and combined to yield a global representation of the whole system. To this end,
some exogenous measure of connectivity of the cross-sectional units is needed. The global
representation can then be used to study the propagation and dynamics of an exogenous
shock to the system. Examples cover applications to monetary policy (e.g., Burriel and
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Galesi 2018; Benecká, Fadejeva, and Feldkircher 2020; Böck, Feldkircher, and Siklos 2021;
Colabella 2021; Georgiadis 2015; Hájek and Horváth 2018), credit shocks (e.g., Eickmeier and
Ng 2015; Fadejeva, Feldkircher, and Reininger 2017), oil price shocks (e.g., Cashin, Mohaddes,
Raissi, and Raissi 2014), and house price shocks (Cesa-Bianchi 2013). Other applications
feature conditional forecasts / scenario analysis (e.g., Pesaran et al. 2004; Greenwood-Nimmo,
Nguyen, and Shin 2012), and unconditional forecasting (Crespo Cuaresma, Feldkircher, and
Huber 2016; Dovern, Feldkircher, and Huber 2016; Chudik, Grossman, and Pesaran 2016;
Pesaran, Schuermann, and Smith 2009).1

One advantage of the GVAR approach is that it is not necessarily restricted to a single type
of unit (such as countries) but it can be used to model the interaction between different layers
of aggregation of the data. Georgiadis (2015) and Feldkircher, Gruber, and Huber (2020b)
model single countries within a monetary union and the monetary authority as a special
entity; Cashin et al. (2014) set up a satellite model that determines oil prices based on world
demand which in turns comes from the local (country-) models from the GVAR. The power
of GVARs lies in the simplicity of the two-step approach that is based on estimating small,
local models (with small dimensions of matrices to invert) while still allowing for parameter
heterogeneity across units.
The general increase in data availability offers the researcher the possibility to analyze and
model more and more complex dynamics. The cost, however, is the large number of param-
eters in the local models to be estimated and – related to that – issues of over-fitting and
numerical instability. A potential solution to this is the use of Bayesian shrinkage priors,
which put discipline on the coefficients. The usefulness of Bayesian methods in this context
has been demonstrated by a range of recent studies (see, e.g., Carriero, Clark, and Marcellino
2019; Koop and Korobilis 2010). Following Crespo Cuaresma et al. (2016) and Feldkircher
and Huber (2016), in BGVAR, the local models are hence estimated using Bayesian shrinkage
priors. These include the well-known Minnesota prior (Litterman 1986), the Stochastic Search
Variable Selection (SSVS) prior (George, Sun, and Ni 2008), the Normal-Gamma (NG) prior
(Huber and Feldkircher 2019), and the horseshoe prior (Carvalho, Polson, and Scott 2010).
Despite its popularity, there is no implementation of GVARs in R (R Core Team 2019) to
date.2 There are, however, some Bayesian VAR packages which can be used to estimate
large-scale models and thus be regarded as competitors to BGVAR: bvarsv by Krueger (2015),
bvartools by Mohr (2019), mfbvar by Ankargren and Yang (2020), BVAR by Kuschnig and
Vashold (2021), and BHSBVAR by Richardson (2020).3 Importantly though, most of the
priors employed in these packages are variations of Minnesota type shrinkage priors, which
are well suited to deal with large data but ignore the cross-sectional data structure typically
present in GVAR applications. Moreover, most packages assume a constant error variance
over time, an assumption that is often not fulfilled when dealing with macroeconomic data.
Allowing for heteroskedasticity in the error variances can be particularly useful when the time
period under study is volatile, leading to considerable improvements in terms of forecasting

1For a recent survey on GVARs, see Chudik and Pesaran (2016). Alternative methods to capture cross-
sectional dependence in large-dimensional datasets are discussed in Feldkircher, Gruber, and Huber (2020a).

2The only programming language for which a thorough treatment of GVARs is available is MATLAB with
the toolbox of Smith, L.V. and Galesi, A. (2014) which follows closely the methodology outlined in Pesaran
et al. (2004). But even in MATLAB there is no toolbox to estimate GVARs in a Bayesian fashion.

3The most established VAR implementation in R is vars (Pfaff 2008). The package uses a classical estimation
framework which is probably not well suited for the estimation of unrestricted, large-scale VARs, which is why
it is not listed among the other, more direct competitors above.
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(see, e.g., Clark 2011).
The BGVAR package contributes to existing R packages in several dimensions: First, it
fills an important gap by providing a GVAR implementation in R. By taking a Bayesian
stance, BGVAR provides a GVAR framework with local models estimated using different,
prominent shrinkage priors and stochastic volatility. Second, most of the computationally
costly functions are coded in C++ making use of the Rcpp environment (Eddelbuettel and
François 2011). This enables estimating large-scale Bayesian GVAR models on a standard
computer. Third, the package includes convenience functions such as print and plot functions
that allow to summarize the output, carry out residual and model diagnostics, and analyze
the in-sample fit of the model. To enhance user-friendliness, method and argument names
follow the vars package where applicable. Last, BGVAR includes several functions essential
to perform inference in multivariate time series models, generalized to the GVAR case. These
cover forecast error variance and historical decompositions, unconditional and conditional
forecasts, and impulse response analysis. The latter can be specified without restrictions
on the variance-covariance matrix, by using orthogonalization, or by introducing zero- and
sign-restrictions.
The remainder of the paper is structured as follows. The next section introduces the econo-
metric framework and the available prior choices. Section 3 describes the full extent of features
available and describes its dependencies. In Section 4, we showcase the main features of BG-
VAR (model estimation, validation, impulse response analysis, and forecast error variance
decompositions) with an example to US equity prices. Finally, Section 5 concludes.

2. Econometric Framework

2.1. Model Framework and Estimation
The GVAR modeling approach consists of two stages. The first stage deals with specifying
unit-specific models. The second stage combines these models to obtain a global representa-
tion of the model.
In this discussion, we remain very general and assume a panel structure where i = 1, . . . , N
indicates unit i and the total number of units isN . For each i, we assume that a ki-dimensional
vector of endogenous variables yit follows a vector-autoregressive model with P lags. These
are complemented with contemporaneous and lagged exogenous regressors y∗it of dimension
k∗i . For a pre-specified set of weights wij (which satisfy

∑N
j=1wij = 1 and wii = 0), the vector

y∗it represents a weighted average of the other units:

y∗it =
N∑
j=1

wijyjt.

Note that for the ease of notation, we assume equal weights for each element in y∗it. The
package allows to relax this restriction by using separate weights for e.g., different variable
types.
The resulting unit-specific model is given by:

yit = ai0 + ai1t+
P∑
p=1

Φipyit−j +
Q∑
q=0

Λiqy
∗
it−j + εit, εit ∼ N (0,Σit), (1)
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where ai0 and ai1 denote ki−dimensional coefficient vectors. These relate to the deterministic
component of the model which we assume to consist of an intercept and a trend term.4 Next,
Φij (j = 1, . . . , P ) denotes a ki× ki-dimensional coefficient matrix associated with the lagged
dependent variables, Λij (j = 0, . . . , Q) denotes a ki×k∗i matrix of coefficients associated with
the (weakly) exogenous regressors in y∗it, and εit is a Gaussian error vector with zero mean
and ki×ki-dimensional variance-covariance matrix Σit. To allow for unit-by-unit estimation,
we assume that εit and εjt are independent for all i, j and hence Σt = diag(Σ1t, . . . ,ΣNt)
is a block-diagonal matrix. This also implies that any co-movement between yit and yjt
is exclusively driven by y∗it. The specification of the unit-specific models is completed by
decomposing Σit = ViDitV

>
i , where Vi denotes a lower uni-triangular matrix and Dit =

diag(edi1,t , . . . , ediki,t) with dij,t following an AR(1) process.
The second step consists of stacking the estimated coefficients of the unit-specific models
into a global system of equations. This step is straightforward and involves only algebraic
transformations of the coefficients. For the sake of brevity, we outline the derivation of the
global model by assuming P = Q = 1. This implies that

yit = ai0 + ai1t+ Φi1yit−1 + Λi0y∗it + Λi1y∗it−1 + εit.

In what follows, we re-write the unit-specific models in terms of the global vector of endoge-
nous variables yt =

(
y>1t, . . . ,y

>
Nt

)>
of dimension k =

∑N
j=1 kj . For that purpose, we need a

unit-specific link matrix Wi (ki × k) and a selection matrix Si (ki × k). The former stores
the unit-specific weights to construct the (weakly) exogenous regressors y∗it, while the latter
selects the unit-specific variables from the global vector. This results into

Siyt = ai0 + ai1t+ Φi1Siyt−1 + Λi0Wiyt + Λi1Wiyt−1 + εit,

(Si −Λi0Wi)︸ ︷︷ ︸
=Gi

yt = ai0 + ai1t+ (Φi1Si + Λi1Wi)︸ ︷︷ ︸
=Hi1

yt−1 + εit,

Stacking this expression for all countries leads to

Gyt = a0 + a1t+ H1yt−1 + εt,

with a0 =
(
a>10, . . . ,a

>
N0

)>
, a1 =

(
a>11, . . . ,a

>
N1

)>
, G =

(
G>1 , . . . ,G

>
N

)>
, H1 =

(
H>

11, . . . ,H
>
N1

)>
,

and εt =
(
ε>1t, . . . , ε

>
Nt

)>
. Pre-multiplying the expression with G−1 yields the global vector

autoregressive model

yt = G−1a0 + G−1a1t+ G−1H1yt−1 + G−1εt

= b0 + b1t+ F1yt−1 + et,

with b0 and b1 denoting k × 1 global vectors consisting of deterministic terms, F1 denoting
a k × k-dimensional global coefficient matrix, and et the k × 1-dimensional vector of global
residuals. et ∼ N (0,Σet) is a Gaussian shock with Σet denoting the k×k-dimensional global
variance-covariance matrix. Note that Σet = G−1ΣtG

−1> is a full matrix. This implies
that contemporaneous relations in the model are effectively driven by the components that
determine G, namely Λi0 and the weights wi = (wi1, . . . , . . . , wiN )>.

4BGVAR allows for including additional deterministic components and exogenous variables.
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The same algebraic transformations as above can be used to derive the global representation
of the model for the more general case with P ∗ = max(P,Q) lags:

yt = b0 + b1t+
P ∗∑
j=1

Fjyt−j + et, et ∼ N (0,Σet). (2)

Here, Fj (j = 1, . . . , P ∗) denotes a k× k-dimensional global coefficient matrix. Note that the
corresponding parameters depend on the estimates of the submodels as well as the exogenously
specified weights. Equation (2) resembles a standard large-scale VAR model with P ∗ lags.

2.2. Prior Specification

Since the GVAR model features a large number of free parameters, we adopt a Bayesian
approach to estimation and inference. The package allows for estimating the GVAR model
using three different priors. All these priors capture the notion that non-stationary variables
follow a random walk process a priori. However, they differ with respect to how shrinkage is
introduced. In this paper, we only summarize the main features of these priors and refer to
the relevant literature for more information.
To simplify prior implementation, we collect all unit-specific coefficients in a Ni = kiKi vector
Ψi = (ai0,ai1,Φi1, . . . ,ΦiP ,Λi0, . . . ,Λ∗iQ)> (with Ki = kiP + k∗i (Q+ 1) + 2). Depending on
the transformations of the time series in yit, we assume that the prior mean of Φi1 is equal
to an identity matrix (if yit is integrated of order one) or equal to a zero matrix (if yit is
stationary). To capture a situation where some of the endogenous variables are stationary
but persistent, the prior mean can also be centered on an AR(1) process. For the remaining
coefficients, the prior mean is always set equal to zero. For further convenience, we capture
these prior assumptions on the mean in a vector Ψi.
All priors on the unit-specific coefficients in Ψi are Gaussian and have a prior mean equal
to Ψi. Differences in the prior arise through the treatment of the prior variance V i. More
precisely, the prior on Ψi is given by

Ψi ∼ N (Ψi,V i). (3)

Again, as stated above, we assume that Ψi is the same for all priors. The different priors
result from different choices of V i.
The first prior we consider is a variant of the well-known non-conjugate Minnesota prior (for
an overview, see Koop and Korobilis 2010, 2013). The prior variance of this setup differs
across the different coefficient types in our model. First, for some equation j in unit i we
assume that the prior variance on the kth lag of yij,t, the jth element of yit, is equal to λ2

1/k
2.

λ1 is a hyperparameter that is either set by the researcher or estimated. This specification
implies that higher lag orders will be forced towards zero since the prior variance is decreasing
in the lag length. The intuition is that the more recent past is likely to explain more variation
in xij,t as compared to the more distant past.
Lags of the other endogenous variables yis,t for s 6= j are treated differently. For those, the
prior variance equals σ2

jσ
−2
s λ2

1λ
2
2/k

2. The first term serves to control for scaling differences
with σj , σs denoting the OLS residual standard deviations obtained by estimating univariate
autoregressive models of order P and Q, respectively. The second term is similar to the prior
variance we use on its “own” lags of a given variable but assume that λ1 > λ2. This controls
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for the fact that lags of other variables tend to be less important than own lags of a given
variable. Higher lag orders are, again, increasingly forced to zero.
The third block we consider are the coefficients on the weakly exogenous variables. For them,
we specify the prior variance analogously to the case described in the previous paragraph but
replace λ2 with λ3. This results in a prior variance of σ2

jσ
−2
s λ2

1λ
2
3/(k + 1)2. Finally, we set

the prior variance on the deterministic part of the model equal to λ4, with λ4 being a large
value to render the prior effectively non-informative.
Since λ1, λ2, and λ3 can be considered to be influential hyperparameters, we prefer inferring
them from the data. Similar to Giannone, Lenza, and Primiceri (2015), we specify Gamma
priors on λs(s = 1, . . . , 3). These Gamma priors are set to be weakly informative. This proce-
dure allows us to estimate the shrinkage hyperparameters alongside the remaining coefficients
of the model.
The main advantage of the prior discussed above is that it effectively depends only on a
low number of hyperparameters. The downside of this, however, is a probably too restrictive
structure since it implies the same degree of shrinkage on, for example, the coefficients related
to the contemporaneous values of y∗it. To allow for more flexibility and control for model
uncertainty, we use the Stochastic Search Variable Selection (SSVS) prior put forward in
George and McCulloch (1993) and subsequently introduced to the VAR literature by George
et al. (2008). This prior imposes a scale mixture of two Gaussian distributions on each element
in Ψi, Ψij

Ψij | δij ∼ (1− δij)N (Ψij , τ
2
0,ij) + δijN (Ψij , τ

2
1,ij), δij ∼ Bernoulli(p), (4)

where δij is a binary random variable, τ2
1,ij � τ2

0,ij denote prior scaling parameters and p is
the prior inclusion probability. If δij = 1, the prior variance is τ2

1,ij . This will be set to a
large value, implying that relatively little information is introduced through the prior. By
contrast, if δij = 1, the prior variance equals τ2

0,ij which will be very close to zero. In this
case, the prior dominates the likelihood and the resulting posterior estimate will be close to
zero (i.e., the jth regressor will be excluded). George et al. (2008) modify this approach by
setting τ2

0,ij = c0σ̂
2
ψij

and τ2
1,ij = c1σ̂

2
ψij

. Here, we let σ̂2
ψij

denote the OLS variance of ψij , c0
is set to a number close to zero, and c1 will be large. Standard choices from the literature
are c0 = 0.1 and c1 = 10. Finally, we set the prior inclusion probability p = 0.5. This implies
that all covariates are equally likely to enter the model a priori.
Spike and slab priors such as the SSVS prior have excellent theoretical properties (Bhat-
tacharya, Pati, Pillai, and Dunson 2015). However, in large models, estimating the discrete
indicators is difficult since vast model space of dimension 2Ki needs to be explored. For
moderately-sized datasets, Ki is typically large and even carefully constructed MCMC algo-
rithms might run into mixing issues.
As a solution, one can approximate the behavior of a spike and slab prior by specifying an
absolutely continuous shrinkage prior. Here, we use the Normal-Gamma (NG) prior as a
variant of the global-local shrinkage priors originally proposed in Griffin, Brown et al. (2010)
and applied to the VAR case in Huber and Feldkircher (2019). The NG prior is given by

Ψij | λ2
i , θij ∼ N (Ψij , 2λ−2

i θij), θij ∼ G(τθ, τθ), λ2
i ∼ G(dλ, eλ). (5)

θij denotes the local shrinkage parameter that is coefficient specific and λi is a global shrinkage
term that pulls all elements in Ψi towards zero. This can be viewed as a common scaling factor
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with the θij allowing for coefficient-specific deviations in light of a large value of λ2
i . On both

the global and local parameters, we impose Gamma distributed priors with hyperparameters
τθ, dλ, eλ. τθ controls the tail behavior of the prior with small values placing more prior mass
on zero and leading to heavier tails. The remaining two hyperparameters dλ and eλ control the
amount of global shrinkage with small values (i.e., of order 0.01) leading to heavy shrinkage
towards the origin. To allow for more flexibility, it is possible to specify a hyperprior on
τθ ∼ Exp(1). This prior setup leads to the Bayesian LASSO (Park and Casella 2008) and
imposes heavier tails for smaller values of τθ. Since the conditional posterior distribution is
not available in closed form, this hyperprior is implemented through an additional adaptive
random-walk Metropolis-Hastings step. Since this is computationally more demanding than a
simple Gibbs step, we allow for its depreciation and – unless the parameter is not user-specified
– set it to τθ = log(ki)−1.
The key feature of this prior is that if the local scaling parameters are integrated out, the
corresponding marginal prior is heavy tailed and effectively allows to separate signals from
noise. Huber and Feldkircher (2019) show that this prior works well for US macroeconomic
data and modify it to also capture features of the Minnesota prior such as increased penalty
for higher lag lengths.
One potential drawback of the NG prior is that one has to specify hyperparameters. A
possible remedy is the horseshoe (HS) prior (Carvalho et al. 2010), which is free of user-
chosen hyperparameters but still highly adaptive and robust to a variety of situations. The
HS prior is given by

Ψij | λij ∼ N (Ψij , λ
2
ijτ

2
i ), λij ∼ C+(0, 1), τi ∼ C+(0, 1) (6)

where C+(0, a) is a standard half-Cauchy distribution on the positive reals with scale pa-
rameter a. λij denotes the local shrinkage parameter that is coefficient specific and τi is
a global shrinkage term that pulls all elements in Ψi towards zero. Makalic and Schmidt
(2015) provide a simple and efficient sampling scheme based on auxiliary variables that lead
to conjugate conditional posterior distribution of all parameters.
This concludes the prior setup for the coefficients. What remains is the prior set-up for the
variance. We follow Carriero et al. (2019) and Carriero, Chan, Clark, and Marcellino (2022)
and decompose the unit-specific covariance matrix into Σit = ViDitV

>
i , where Vi is a lower

uni-triangular matrix and Dit is a diagonal matrix with the log-volatilities on its diagonal.
Here, we rely on the prior setup proposed in Kastner and Frühwirth-Schnatter (2014).5 Since
we sample the free elements in Vi using the algorithm outlined in Carriero et al. (2019) and
Carriero et al. (2022), we can use a shrinkage prior similar to the ones discussed above.

2.3. Structural Inference
One of the main applications of a GVAR is to assess the domestic and international impulse
responses to a unit-specific shock. BGVAR allows for calculating generalized impulse response
functions (GIRFs, Pesaran and Shin 1998), orthogonalized impulse response functions using
a Cholesky decomposition, and impulse response functions given a set of user-specified sign
restrictions.

5This corresponds to using a Gaussian prior with zero mean and variance 10 on the unconditional mean
of the log-volatility, a Beta prior on the persistence parameter ρ, (ρ + 1)/2 ∼ B(25, 5) and a non-conjugate
Gamma prior on the error variance of the log-volatility process σ2

h ∼ G(1/2, 1/2). In case we do not use SV,
we drop the subindex t and use weakly informative inverted Gamma priors on the innovation variances.
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In principle, well-known identification procedures of the VAR literature can be applied to
the global solution of the GVAR. Since the GVAR depends on an exogenous measure of
connectivity of the cross-sectional units, there is no need for a full identification of the global
model. The bulk of the GVAR literature consequently identifies the model only locally (Dees,
di Mauro, Pesaran, and Smith 2007; Eickmeier and Ng 2015; Feldkircher and Huber 2016)
which is also the way identification is implemented in BGVAR.
Local identification implies applying the Cholesky decomposition or sign restrictions only in
the unit (country) of interest. For example, to identify a shock in the first unit model, it
suffices to apply the identification scheme under consideration to Σ1t (with i = 1 denoting
the first unit model). More specifically, this boils down to

Q−1
1 y1t = Q−1

1 a10 + Q−1
1 a11t+ Q−1

1

P∑
j=1

Φ1jy1,t−j + Q−1
1

Q∑
j=0

Λijy
∗
i,t−j + Q−1

1 ε1t︸ ︷︷ ︸
:=v1t

, (7)

with Q−1
1 being the lower Cholesky factor of Σ1t. To construct the corresponding global

representation of the GVAR with a locally identified shock, we have to set up a matrix Q

Q =


Q1 0 . . . 0

0 Ik2

...
... . . . 0
0 . . . 0 IkN

 ,

with Iki
denoting an identity matrix of dimension ki. The global vector of structural errors is

then obtained by Q−1εt = (v′1t, ε′2t, . . . , ε1t)′. Hence, the local identification yields orthogonal
residuals in country model i, whereas the remaining residuals are potentially correlated. As
a result, impulse responses to shocks in unit 1 are structural whereas responses to shocks
outside the first unit model are of the generalized type.
Identification via sign restrictions follows in the same fashion with the exception that instead
of Q1 we use Q1R1 with R1 denoting a k1 × k1 rotation matrix. The rotation matrix has to
be sampled either by using the algorithm of Rubio-Ramirez, Waggoner, and Zha (2010) or
– in case we couple zero with sign restrictions – the algorithm of Arias, Rubio-Ramírez, and
Waggoner (2018). BGVAR also allows to place sign restrictions on the cross-section or to
examine responses to a joint / regional shock. This implies that the identity matrices on the
diagonal of Q are replaced by suitable QiRi matrices. It is worth noting that this increases
computational costs considerably.

3. The BGVAR Package
The BGVAR package provides a user-friendly implementation of Bayesian Global Vector
Autoregressions in R (R Core Team 2019).
Its main function is the bgvar method:

R> model.1 <- bgvar(Data, W, plag=1, draws=5000, burnin=5000, prior="NG",
+ SV=TRUE, hold.out=0, thin=1, hyperpara=NULL, eigen=TRUE,
+ Ex=NULL, trend=FALSE, expert=NULL, verbose=TRUE)



Maximilian Böck, Martin Feldkircher, Florian Huber 9

At a minimum, the user has to submit a Data argument and a N ×N weighting matrix. The
Data can be submitted either as a T × k matrix. The column-names of the matrix object
have to follow a specific naming convention: The string should consist of two parts, with the
first indicating the unit model and the second referring to the name of the variable. These
two parts should be separated by a dot.6 The package also provides a function to read data
from Excel. Note that the order of the unit models should be the same as indicated by the
column and row names of the weight matrix W.
The local models in BGVAR can be estimated using four shrinkage priors: The Minnesota
prior (prior="MN") of Litterman (1986), the Stochastic Search Variable Selection prior (prior="SSVS")
of George et al. (2008), the Normal-Gamma prior (prior="NG") of Huber and Feldkircher
(2019), and the Horseshoe prior (prior="HS") of Carvalho et al. (2010). For each of the
implemented priors, all hyperparameters and -priors (if available) are adjustable. This can
be done by submitting a list object to hyperpara.
Other options regarding estimation involve that we use all observations in the sample (hold.out=0),
no trend and no truly exogenous variables (trend=FALSE, Ex=NULL), 5,000 burn-ins and re-
tained posterior draws (burnin=5000, draws=5000), and a lag length of one (plag=1). Addi-
tionally, we allow to estimate the local models with stochastic volatility to control for possible
heteroskedasticity (SV=TRUE).
In order to ensure stability of the global model, explosive draws of the posterior are discarded.
We follow recommendations in Dees et al. (2007) and Smith, L.V. and Galesi, A. (2014) and
discard draws for which the eigenvalues of the companion matrix of the global solution of the
model exceed 1.05. Other cut-off values can be specified via eigen. For applications that
require a large number of draws from the joint posterior, saving the full set of posterior draws
can become unfeasible. To address this, we can use a thinning factor to store only each thinth
draw from the posterior. The default option uses a thinning of 1 (thin=1), which implies
that each posterior draw will be saved.
BGVAR allows to modify the standard GVAR framework in several ways. This can be
done by submitting a list to expert. Expert settings comprise the treatment of specific unit
models (e.g., a unit to model oil prices or common monetary policy, see, Cashin et al. 2014;
Feldkircher et al. 2020b), distinct weights to compute weakly exogenous variables (Eickmeier
and Ng 2015), or exclusion restrictions on the set of variables for which weakly exogenous
variables should be calculated.
Other settings relate to storage and computational aspects. Per default, BGVAR makes use
of Rccp which yields substantial computational benefits. To side-step the C++ environment
(e.g., for more in-depth error-handling), one can specify expert = list(use_R = TRUE).
The package is available cross-platform and depends only on well established R packages.
Most of the package is implemented in native R for transparency and is also available on
Github7 in order to make it easier for users to create adaptions, suggest new features, or report
bugs. Since the estimation and parts of the provided tools are computationally expensive,
the package relies on C++. This implies a main dependency on Rcpp (Eddelbuettel and
François 2011) and RcppArmadillo (Eddelbuettel and Sanderson 2014). To ensure an easy

6Alternatively, the user can submit data as a list object of length N , with each element in the list containing
the T × ki data of one specific unit model. The names of the list should refer to the unit models. The package
provides a converter function between matrix- and list-style input data.

7There is a development version of the package available on GitHub: https://github.com/mboeck11/
BGVAR.

https://github.com/mboeck11/BGVAR
https://github.com/mboeck11/BGVAR
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way to modify the package, every line of code written in C++ also has a fall-back option
written in R (see previous paragraph). To further speed up computation, BGVAR allows
the use of parallel computation in the estimation function. This implies that BGVAR relies
on parallel (R Core Team 2019). Stochastic volatility is implemented using the stochvol
package of Kastner (2016). Further dependencies are mvtnorm (Genz, Bretz, Miwa, Mi,
Leisch, Scheipl, and Hothorn 2020) and GIGrvg (Leydold and Hormann 2017) to simulate
from the conditional posterior distributions, the packages abind (Plate and Heiberger 2016),
MASS (Venables and Ripley 2002), Matrix (Bates and Maechler 2019), readxl (Wickham and
Bryan 2019), xts (Ryan and Ulrich 2020), and zoo (Zeileis and Grothendieck 2005) for data
manipulation, and coda (Plummer, Best, Cowles, and Vines 2006) and bayesm (Rossi 2019)
to inspect posterior output.
BGVAR includes several further methods that are worth discussing. As such, forecasting
methods are of particular interest, since GVARs possess excellent forecasting properties (Cre-
spo Cuaresma et al. 2016; Dovern et al. 2016). More specifically, BGVAR allows for computing
unconditional as well as conditional forecast distributions. Conditional forecasts can be used
to perform scenario analysis, i.e., examining the effects of fixing the future path of one variable
on the remaining variables. The implementation of conditional forecasts in BGVAR follows
closely the work of Jarociński (2010).
The main application of GVARs is to estimate spillover effects between cross-sectional units
or more generally analyze cross-unit dependence. This can be achieved through impulse
response functions (IRFs), forecast error variance decompositions (FEVDs) and historical
decompositions (HDs). Impulse response functions show how a unit model reacts to exogenous
shocks. These shocks can both originate in the same or another unit model. The propagation
of these shocks through the system is of great interest, but relies on proper identification.
BGVAR offers different identification schemes: recursive identification based on the Cholesky
decomposition, sign restrictions, or a combination of sign- and zero-restrictions. While the
implementation of the Cholesky decomposition is computationally cheap, sign-restrictions
require a computationally costly algorithm. In particular, we implement the algorithm of
Rubio-Ramirez et al. (2010) and Arias et al. (2018). To speed up computation, impulse
response functions are implemented in C++. Forecast error variance decompositions indicate
the amount of information each variable contributes to the other variables in the system by
examining how much of the forecast error variance of each of the variables can be explained
by exogenous shocks. A historical decomposition allows to examine the relative importance
of (structural) shocks in explaining deviations of a time series from its unconditional mean.
This can be used to assess the hypothetical question of how data would have looked like if
it was driven only by a particular shock (e.g., monetary policy shock) or a combination of
shocks.
BGVAR also includes different and ready to use datasets. A very popular data set with an
extensive country and time period coverage is pesaranData, which has been used in Dees
et al. (2007) and updated by Mohaddes and Raissi (2020). We will use this data set for
the illustrative example and describe it in more detail. The data set eerData covers 43
countries and the euro area as a regional aggregate. A subset of this data set has been used
in Feldkircher and Huber (2016). testdata is a further subset of eerData which contains only
three countries and is used for illustrational purposes of some – time-consuming – functions.
All of these data sets feature a quarterly frequency and are available either in levels or as
first differenced data. The data sets also include example weight matrices, which are typically
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Table 1: Functionality of BGVAR.

Function Class Description

Estimation function
bgvar bgvar Estimation of the Bayesian global vector autoregression.

Tool functions
irf bgvar.irf Computation of impulse response functions.
predict bgvar.pred Computation of (conditional) predictions.
fevd bgvar.fevd Computation of a forecast error variance decomposition.
gfevd bgvar.fevd Computation of a generalized forecast error variance decomposi-

tion.
hd bgvar.hd Computation of a historical decomposition.

Helper functions - bgvar
coef S3 method of bgvar: Extracts coefficients.
coefficients S3 method of bgvar: Extracts coefficients.
dic S3 method of bgvar: Computes Deviance information criterion.
fitted S3 method of bgvar: Extracts fitted values.
logLik logLik S3 method of bgvar: Compututation of the log-likelihood.
print S3 method of bgvar, bgar.summary, and bgvar.CD.
plot S3 method of bgvar and bgvar.resid.
resid bgvar.resid S3 method of bgvar: Extracts residuals.
residuals bgvar.resid S3 method of bgvar: Extracts residuals.
summary bgvar.summary S3 method of bgvar: Computes summary statistics.
vcov S3 Method of bgvar: Extracts the covariance matrix.
avg.pair.cc Average pairwise cross-sectional correlations.
conv.diag bgvar.CD Computes Geweke’s convergence diagnostic.
resid.corr.test Residual autocorrelation test.
matrix_to_list Converts an input matrix to a suitable list for estimation.
list_to_matrix Converts an input list to a suitable matrix for estimation.
excel_to_list Reads Data from Excel in a suitable list for estimation.

Helper functions - irf
print S3 method of bgvar.irf.
plot S3 method of bgvar.irf.
get_shockinfo Creates shockinfo argument.
add_shockinfo Adapts shockinfo argument.

Helper functions - predict
plot S3 method of bgvar.pred.
print S3 method of bgvar.pred, bgvar.lps, and bgvar.rmse.
lps bgvar.lps Log-predictive scores of predictions.
rmse bgvar.rmse Root mean squared errors of predictions.

Helper functions - fevd / hd
plot S3 method of bgvar.fevd and bgvar.hd.
print S3 method of bgvar.fevd and bgvar.hd.
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based on annual, bilateral trade flows. Last, monthlyData contains monthly macroeconomic
and financial observations for 28 countries. The corresponding weight matrix is based on
bilateral input-output flows from the world input-output data base (Timmer, Dietzenbacher,
Los, Stehrer, and de Vries 2015).
To sum up, BGVAR allows for the estimation of Bayesian global vector autoregressions in
a user-friendly manner. Furthermore, state-of-the-art methods to conduct predictions and
structural inference in time series analysis are available. The package offers various tools for
structural analysis, such as impulse response analysis, forecast error variance decompositions,
and historical decompositions. In addition, the package includes a comprehensive documen-
tation as well as several helper functions to ensure user-friendliness. These functions comply
with those of related R packages and include coef, fitted, logLik, plot, predict, print,
resid, summary, as well as vcov. An overview of all functions, classes, and available methods
is provided in Table 1.

4. Application: A Shock to US Equity Prices
In this section, we showcase the features of BGVAR by investigating the international ef-
fects of a negative shock to US equity prices. We use a built-in dataset and go through a
typical application: (1) loading the data, (2) estimating the model and examining its statisti-
cal properties, (3) evaluating alternative specifications, and finally (4) performing structural
analysis.
We start with loading the BGVAR package and the built-in dataset pesaranData. We also
set a seed for reproducibility of the results.

R> library("BGVAR")
R> data("pesaranData")
R> set.seed(413)

pesaranData contains quarterly observations from 1979Q2 to 2019Q4 and for 29 countries.
The countries are listed in Table 2 and comprise a good balance between advanced and
emerging economies as well as oil producers and consumers. Most of the advanced economies
are located in Europe, either as part of the euro area or with an independent monetary
policy authority. Other advanced economies comprise major industrial countries from the
rest of the world, such as the United States (US). With the exception of Japan, one country
from Latin America (LatAm), the Middle East and African (MEA) region and Asia can be
considered to be emerging economies. Taken together, the countries account for about 90%
of global output. The variables covered in the data set comprise real GDP (yit), consumer
price inflation (Dpit), short- and long-term interest rates (rit and lrit), the real exchange rate
against the US dollar (epit), and equity prices (eqit). All variables except interest rates are
in logarithmic form. The exchange rate is deflated using consumer prices with an increase
implying a real depreciation of the local currency against the dollar. Short-term interest
rates are transformed as 0.25 × ln(1 + Rit/100), with Rit denoting 3-months money market
rates. A similar transformation is used for long-term rates, with the underlying interest rates
corresponding to 10-year government bond yields.8 All country models at least contain data

8Global control variables, such as oil prices, a price index for agricultural raw materials, as well as metal
prices are contained in the object dominant but are by default not included in any of the country models.
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Table 2: Country Overview

EA Non-EA RoW LatAm MEA Asia

AT CH AU CL MY CN
BE SE CA ZA IN
FI NO NZ TR ID
FR GB US JP
DE KR
IT MY
ES PH
NL SG

TH
Notes: Euro Area (EA), Rest of World
(RoW), Latin America (LatAm), Middle-
East & Africa (MEA)

on output and inflation. The remaining variables, especially data on long-term yields and
equity prices, are missing for some emerging economies. Last, we need to consider a weight
matrix that links the country models. Here, we use W.8016 which automatically loads with
pesaranData. The matrix is based on annual bilateral trade flows averaged over the period
1980 to 2016. Other weight matrices can be constructed using trade flows. For an in-depth
description of the data and underlying sources, see Mohaddes and Raissi (2020).

4.1. Estimation and Model Diagnostics

To estimate a model with the default options, we have to submit as a minimum a data set
and a weight matrix:

R> model.1 <- bgvar(Data = pesaranData, W = W.8016)

The default options imply that we use the NG prior (prior="NG"), 5,000 burn-ins and retained
posterior draws (burnin=5000, draws=5000), no trend (trend=FALSE), a lag length of one
(plag=1), and stochastic volatility (SV=TRUE).
There are several ways of summarizing the model’s output. A first impression can be gath-
ered by considering the information printed in the console. The print method provides an
overview about the variables contained in each country model, where an asterisk denotes
weakly exogenous variables, a double asterisks denotes exogenous variables, and variables
without asterisks show the endogenous variables per unit.
A more elaborate way of inspecting the model’s properties can be obtained by invoking the
summary method:

R> summary(model.1)

---------------------------------------------------------------------------
Model Info:
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Prior: Normal-Gamma prior (NG)
Number of lags for endogenous variables: 1
Number of lags for weakly exogenous variables: 1
Number of posterior draws: 5000/1=5000
Number of stable posterior draws: 1035
Number of cross-sectional units: 28
---------------------------------------------------------------------------
Convergence diagnostics
Geweke statistic:
2176 out of 23870 variables' z-values exceed the 1.96 threshold (9.12%).
---------------------------------------------------------------------------
F-test, first order serial autocorrelation of cross-unit residuals
Summary statistics:
========= ========== ======
\ # p-values in %
========= ========== ======
>0.1 65 42.21%
0.05-0.1 10 6.49%
0.01-0.05 24 15.58%
<0.01 55 35.71%
========= ========== ======
---------------------------------------------------------------------------
Average pairwise cross-unit correlation of unit-model residuals
Summary statistics:
======= ========= ========= ========= ========= ========= =========
\ y Dp r lr ep eq
======= ========= ========= ========= ========= ========= =========
<0.1 28 (100%) 28 (100%) 28 (100%) 18 (100%) 27 (100%) 25 (100%)
0.1-0.2 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
0.2-0.5 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
>0.5 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
======= ========= ========= ========= ========= ========= =========
---------------------------------------------------------------------------

We first investigate whether the posterior distribution has converged to its target distribution.
BGVAR draws on Geweke’s convergence diagnostic (CD), implemented in the coda package.
In a nutshell, the diagnostic is based on a test for equality of the means of the first and last
part of a Markov chain (by default we use the first 10% and the last 50%). If the samples are
drawn from the stationary distribution of the chain, the two means are equal and Geweke’s
statistic has an asymptotically standard normal distribution. The statistic indicates practical
convergence for the majority of the variables.
The next statistic is an F-test of the first-order serial autocorrelation in the residuals of each
equation in the GVAR. By default and in compliance with the literature, we consider the
residuals of each unit model as opposed to the residuals of the global solution of the GVAR.
The null hypothesis of the F-test corresponds to the case of no serial correlation. The ta-
ble shows the share of p-values that fall into different significance categories. Changing the
number of lags and switching stochastic volatility on / off both can impact residual serial
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R> yfit <- fitted(model.1)
R> plot(model.1, global=FALSE, resp="US")
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Figure 1: In-sample fit for US variables.

correlation. The GVAR framework relies on the assumption that the inclusion of weakly
exogenous variables soaks up most of the cross-unit correlation in the residuals. Significant
correlations prohibit a structural and spillover analysis (Dees et al. 2007). This can be in-
spected by looking at simple pair-wise correlations, which are provided in the bottom part of
the summary output. More specifically, we provide a statistic on the cross-unit correlation
of (posterior median) residuals of the unit models. In our example, correlation is reasonably
small.
Besides the summary method, the package provides additional ways of inspecting the proper-
ties of the model. For example, the in-sample fit can be obtained by using fitted and the
residuals using residuals. For both methods, the default option is to look at the residuals of
the global solution of the model. Setting global=FALSE, provides results of the unit models’
residuals. In Figure 1 we show the in-sample fit for the US model.
For all variables considered, the model provides a reasonable in-sample fit. In the next sub-
section, we further examine the out-of-sample properties of different model specifications.

4.2. Model Validation

In this sub-section, we briefly outline ways to validate the specification for the estimated
model. One way to do this is to use a forecasting exercise. In particular, we are interested
in whether other prior-choices and lag lengths would improve the out-of-sample properties of
the model. We do this for all four available priors and plag=1 and plag=2 lags. For the sake
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of brevity, we only use a small number of posterior draws. By specifying hold.out=8, we
tell BGVAR to reserve eight observations as a hold-out sample that we can use to compute
predictive performance measures. The following lines estimate the models for the different
specifications:

R> model1.ssvs <- bgvar(Data=pesaranData,W=W.8016,plag=1,hold.out=8,thin=2,
+ draws=1000,burnin=1000, prior="SSVS")
R> model1.ng <- bgvar(Data=pesaranData,W=W.8016,plag=1,hold.out=8,thin=2,
+ draws=1000,burnin=1000, prior="NG")
R> model1.mn <- bgvar(Data=pesaranData,W=W.8016,plag=1,hold.out=8,thin=2,
+ draws=1000,burnin=1000, prior="MN")
R> model1.hs <- bgvar(Data=pesaranData,W=W.8016,plag=1,hold.out=8,thin=2,
+ draws=1000,burnin=1000,prior="HS")
R> model2.ssvs <- bgvar(Data=pesaranData,W=W.8016,plag=2,hold.out=8,thin=2,
+ draws=1000,burnin=1000,prior="SSVS")
R> model2.ng <- bgvar(Data=pesaranData,W=W.8016,plag=2,hold.out=8,thin=2,
+ draws=1000,burnin=1000, prior="NG")
R> model2.mn <- bgvar(Data=pesaranData,W=W.8016,plag=2,hold.out=8,thin=2,
+ draws=1000,burnin=1000, prior="MN")
R> model2.hs <- bgvar(Data=pesaranData,W=W.8016,plag=2,hold.out=8,thin=2,
+ draws=1000,burnin=1000,prior="HS")

We use the predict method to compute dynamic predictions based on the estimated coeffi-
cients. We set the forecast horizon to n.ahead=8. As a summary measure of the predictive
performance, we calculate log-predictive scores (LPS) using the lps method. We could do
this for selected variables of interest. Below, we simply calculate the sum of all LPS to get
an overall impression of the forecasting performance under a particular specification:

R> fcast <- predict(model1.ssvs, n.ahead=8)
R> lps.ssvs<-sum(lps(fcast))

We repeat the same exercise for the other specifications and summarize the results in Table 3
below.

SSVS NG MN HS
p=1 3631.88 3473.59 3623.63 3477.40
p=2 3647.38 3413.72 3792.75 3455.45

Table 3: LPS scores

This forecasting exercise is not decisive whether using plag=2 lags pays off for predictive
accuracy. An alternative way of model selection is the use of information criteria. In BGVAR,
we have implemented the deviance information criterion (DIC) of Spiegelhalter, Best, Carlin,
and Van Der Linde (2002), which can be calculated using the dic command. In Table 4, we
show the DIC values relative to the one of the default specification using the NG prior and
one lag.



Maximilian Böck, Martin Feldkircher, Florian Huber 17

SSVS NG MN HS
p=1 1.00 1.00 17.90 0.00
p=2 0.08 0.00 0.01 1.50

Table 4: DIC relative to NG (p=1)

Together with the assessment of LPS values, the DIC points to a more parsimonious model.
Taken together, the MN prior with plag=1 lags seems to yield a good compromise between
out-of-sample performance and model complexity with the data used in the example.

used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 1591509 85.0 2529041 135.1 NA 2529041 135.1
Vcells 101526239 774.6 404716196 3087.8 102400 1327618215 10129.0

4.3. Structural Analysis

In this section, we proceed by estimating the cross-unit propagation of a local shock. More
specifically, we assess the international effect of a 1% decrease in US equity prices. This kind
of spillover analysis is the most frequent application of the GVAR framework (see Chudik and
Pesaran 2016).
The application of the GVAR, however, can also be motivated from a second angle: In case
of strong cross-unit correlation in the data, even if the focus does not lie on spillovers but on
the domestic response in a unit model, the omission of foreign factors can cause misleading
inference (for a recent application in that context, see Feldkircher and Siklos 2019). One way
of assessing cross-unit interlinkages that goes beyond a simple correlation analysis is by using
a (generalized) forecast error variance decomposition (Diebold and Yılmaz 2014).
The BGVAR package offers to estimate both, structural and generalized forecast error vari-
ance decompositions (GFEVD). The following computes a GFEVD with a forecast horizon
of 24 periods (n.ahead=24):

R> gfevd.1=gfevd(model.1,n.ahead=24,running=TRUE)$FEVD

Here, we have chosen to calculate the posterior mean of the GFEVD as a running mean.
The alternative would be to store the full set of posterior draws and to calculate posterior
statistics of interest ex post.
To assess the degree of cross-unit dependence, we can calculate the shares of forecast error
variance explained by domestic and foreign factors. In the following, we focus on Canada, an
important trading partner of the US. Figure 2 shows the relative importance of domestic and
foreign factors in explaining Canadian output:
The findings reveal a typical pattern commonly observed in international macroeconomics.
First, a large degree of forecast error variance can be accounted for by own, domestic variables.
However, as the forecast horizon increases, other (foreign) factors become increasingly impor-
tant. This implies that only short-run fluctuations in output can be more or less accurately
modeled by only considering domestic variables.
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Figure 2: GFEVD of Canadian output.

To see whether these results are specific to Canadian output, we can examine the share of
output variance accounted for by domestic factors across countries. For the ease of illustration,
we focus on two forecast horizons, h = 0 (impact) and h = 24 (long-run). The results are
depicted in Figure 3.
The top panel of Figure 3, shows the fraction of output variance explained by domestic factors
at the h = 0 forecast horizon. We see that for all economies, the share is above 0.6. This
implies that short-run fluctuations in output tend to be largely explained by domestic policy.
Domestic factors tend to be even more important for emerging economies (e.g., Brazil, In-
donesia, China, etc.) and some selected advanced economies (Japan, Australia, and Norway).
The bottom panel of Figure 3 shows the same statistic for the h = 24 forecast horizon. Here,
we see a pronounced decrease of the importance of domestic factors in explaining forecast
error variance of output. More specifically, at a longer horizon, global factors tend to be as
important as domestic factors for most economies. An exception to this general pattern can
be seen for output in Japan, the Philippines, Brazil, and Indonesia.
Having established the importance of taking cross-unit linkages into account, we proceed by
investigating spillovers from a negative shock to US equity prices. Following the bulk of the
GVAR literature (Dees et al. 2007; Eickmeier and Ng 2015; Feldkircher and Huber 2016), we
identify the US equity price locally. This translates into applying the identifying restrictions
only in the unit (country) of interest.
We start with using a Cholesky decomposition of the residuals in the US country model to
identify the equity price shock. It is worth stressing that a recursive identification scheme is
not invariant to different orderings of the variables in the unit model. In our example, the
ordering is output, inflation, short- and long-term interest rates followed by equity prices. In
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Figure 3: Share of output variance explained by domestic factors.

the following, we set up the information needed to compute impulse responses using the irf
function:

R> shockinfo_chol <- get_shockinfo("chol")
R> shockinfo_chol$shock <- "US.eq"
R> shockinfo_chol$scale <- -1
R> irf_chol <- irf(model.1, n.ahead = 24, shockinfo = shockinfo_chol)

get_shockinfo sets up a list with elements shock (i.e., the name of the variable to shock)
and scale. By default, the shock is a positive innovation to the equity price residual. In the
example, we have re-scaled the innovation to −1. In a final step, the list is then passed onto
the irf function, which demands the impulse response horizon (n.ahead=24) as a further
argument.
We can plot the computed impulse response function by using the plot command. The
plot shows the posterior median response (solid, black line) along 68% (dark grey) and 80%
(light grey) credible intervals. We see that the initial -1% decrease in the equity price index
translates into a persistently negative response up to about 15 quarters. This has negative
effects on output, which also declines significantly and up to 20 quarters.
The GVAR framework now allows us to investigate spillovers of the equity price shock to all
other variables and countries in the system. For illustration, we focus on spillovers to output
in important trading partners of the US, namely Canada (CA) and Germany (DE), as well as
countries that are considerably less integrated with the US, namely Switzerland (CH), Turkey
(TR). The results are shown in Figure 5.
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R> plot(irf_chol, resp=c("US.eq","US.y"))
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Figure 4: Impulse response functions in the US country model (Cholesky identification).

R> plot(irf_chol, resp=c("CH.y","TR.y","CA.y","DE.y"))
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Figure 5: Output spillovers for selected countries (Cholesky identification).
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The figure shows that the countries that are to a higher degree interlinked with the US witness
a larger, negative impact on output. In that case, spillovers also tend to be more persistent.
By contrast, effects on output in Switzerland and Turkey are far less pronounced.
We contrast these results by using an alternative way to identify the US equity shock, namely
sign restrictions. More specifically, we use a very loose identification which only consists of
the condition that both equity prices and output have to move in the same direction.

R> shockinfo_sign <- get_shockinfo("sign")
R> shockinfo_sign <- add_shockinfo(shockinfo_sign, shock="US.eq",
+ restriction=c("US.eq","US.y"),
+ sign=c(">",">"),
+ horizon=c(4,4), prob=1, scale=-1)
R> irf_sign <- irf(model.1, n.ahead = 24, shockinfo=shockinfo_sign)

As with the Cholesky identification, we first have to set up an auxiliary object using get_shockinfo.
The necessary information regarding the sign restrictions can be added in a second step using
add_shockinfo. We always consider a positive innovation / shock, hence the first element in
sign has to be positive (>). The second element reflects the restriction of a parallel increase
in output and is hence positive as well. Both restrictions have to hold for four periods (impact
and three quarters) and have to be exactly binding (prob=1). Since we are interested in a
negative shock to equity prices, we use scale=-1. The results are shown in Figure 6.

R> plot(irf_sign, resp=c("US.eq","US.y"), shock="US.eq")
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−0.36

−0.25

−0.13

−0.01

 0.10

0 4 8 12 16 20 24

US.eq

−2.1

−1.2

−0.4

 0.5
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Figure 6: Output spillovers for selected countries (sign restrictions).

The figure demonstrates a negative response of both US equity prices and output. Negative
responses to output prevail up to 17 quarters and hence considerably longer than the horizon
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of the restrictions imply. Responses are hence qualitatively similar to the ones obtained using
an identification strategy based on the Cholesky decomposition.

5. Summary and Discussion

This article describes the functionality of the R package BGVAR to estimate Bayesian global
vector autoregressions with shrinkage priors and stochastic volatility. The package includes
convenience functions such as print and plot functions that allow to summarize the output,
carry out residual and model diagnostics, and analyze the in-sample fit of the model. In
addition, the package offers a fully fledged toolkit to compute impulse response functions,
forecast error variance, and historical error variance decompositions. Structural shocks can
be identified by either using a combination of zero and sign restrictions or by applying a
simple Cholesky decomposition. Sign restrictions and shocks can be applied on single units
or on the cross-section. Generalized impulse response functions are implemented as well. The
package also provides functions to conduct and evaluate out-of-sample forecasts as well as
conditional forecasts that allow to set a future path for a particular variable of interest.
Further applications of the BGVAR package are contained in the vignette that accompanies
the package. These feature estimation of the models with different weights, including ad-
ditional units to model e.g., the joint monetary policy in the euro area (Feldkircher et al.
2020b), or the oil price (Cashin et al. 2014), applications of zero-and sign restrictions coupled
with rationality conditions of D’Amico and King (2015), and conditional and unconditional
forecasts. Naturally, all the necessary commands are explained in the package documentation
that also include detailed examples.
The Bayesian treatment of the unit-specific models is a unique feature of BGVAR. This
allows to include large information sets and in turn, typically results in considerable gains in
forecast performance over standard GVAR models. Another stand-alone feature of BGVAR
is its efficient implementation: large parts of the estimation function are written in C++
utilizing the Rcpp and RcppArmadillo packages. In addition, both estimation and structural
analysis can be carried out using parallel computing drawing on the parallel package. This
implies that most applications can be carried out on a standard computer and in a reasonable
amount of time, which greatly enhances the usability of the BGVAR package.

Computational details

The results in this paper were obtained using R 4.0.3 with the BGVAR 2.4.6 package. R itself
and all packages used are available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/.
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