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Abstract

This paper studies belief distortions in risk premia and their reaction to financial shocks. Belief distortions
are defined as ex-ante expectational errors between survey expectations and full-information rational
expectations (FIRE) expectations of a machine efficient benchmark. Survey expectations of credit spreads
deviate from FIRE and both under- and overreact to new information. The machine efficient benchmark
exploits a high-dimensional real-time dataset with different machine learning estimators, predictively
outperforming survey expectations at large. Belief distortions on financial markets identify periods of
elevated optimism and pessimism on crash risk. I show that conditional on an adverse financial shock,
belief distortions indicate that survey participants evaluate the future too optimistically before turning
pessimistic.
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1. Introduction

Financial crises cause recessions and are costly. Models of financial frictions successfully illustrate the

transmission of financial sector instabilities into a contraction of the broader economy. However, these

models based on rational expectations fail to match the evidence on excessively low credit spreads in the

build-up phase of financial crises. Prior to financial crises, bank equity is overvalued (Baron and Xiong,

2017), credit spreads are too low for too long (Krishnamurthy and Muir, 2017), and rapid credit expansions,

asset price growth, and narrow credit spreads predict an ensuing crisis (Greenwood et al., 2022). Hence,

markets do not seem to be aware of heightened risks.

This pattern is not unique to financial crises since excessive optimism precedes recessions consistently

(Greenwood and Hanson, 2013; López-Salido, Stein and Zakrajšek, 2017). Excessive optimism or pessism

are wrongly formed beliefs about the future or “the systematic misweighting of available information demon-

strably pertinent to the accuracy of the belief” (Bianchi, Ludvigson and Ma, 2022). Agents can form wrong

beliefs due to a variety of reasons, such as noisy or sticky information, rational inattention, overreaction to

incoming news, or the use of simple extrapolative rules, among others. While belief formation has been stud-

ied extensively for macroeconomic quantities such as growth and inflation, belief formation on risk premia

on financial markets has yet to be investigated. This paper examines the systematic neglect of crash risk by

exploring belief distortions of credit spreads. How can one identify ex-ante periods of excessive optimism in

the build-up phase of a financial crisis? How sizable are these belief distortions in risk premia? What is the

dynamic reaction of belief distortions in risk premia conditional on a financial shock?

This paper uses time-series data to investigate belief distortions defined as the difference between survey

expectations and full-information rational expectations (FIRE), or ex-ante expectational errors, in crash risk

(Bianchi, Ludvigson and Ma, 2022). Specifically, I analyze the variation of belief distortions in credit spreads,

which serve as a widely used proxy of risk premia and crash risk on financial markets. Belief distortions

allow the interpretation that agents are temporarily overly optimistic or pessimistic. It is thus a measure

of the sentiment in the economy from an ex-ante perspective. This allows me to investigate the dynamic

reaction of belief distortions, and thus sentiments, in a vector autoregressive framework. Specifically, I

identify a financial shock as unanticipated movement in the excess bond premium (EBP) similar to Gilchrist

and Zakrajšek (2012). For a comparison, I also investigate the dynamic responses to survey forecast errors,

which only allows an ex-post perspective.
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Before belief distortions are constructed, I discuss and investigate the survey and machine efficient

benchmark expectations in more detail. Survey expectations on credit spreads come from the Blue Chip

Financial Indicators, in which a panel of financial executives is asked on their subjective risk expectations

and offers thus a professionals’ assessment of financial markets. I test whether survey expectations of credit

spreads deviate from FIRE using the regression-based approach by Coibion and Gorodnichenko (2015).

Credit spread expectations underreact at the aggregate and overreact at the individual level. These findings

can be explained in a stylized model of private and public signals featuring diagnostic expectations (Bordalo,

Gennaioli and Shleifer, 2018). Since market participants only observe a noisy and distorted signal of crash

risk, agents form wrong or undue expectations about risk premia. The model highlights that belief distortions

arise because agents do not process information rationally.

The second key ingrediant for belief distortions is to measure objective expectations of credit spreads

that resemble FIRE. The approach taken in this paper is to construct a machine efficient benchmark based

on machine learning (ML) techniques. This benchmark can be considered as a belief formation mechanism

itself but is intended to use all available information efficiently in real-time. Practically, this boils down to

a forecasting exercise using (non-)linear ML models, which involves Bayesian shrinkage priors, the Elastic

Net, and Bayesian Addtive Regression Trees. Machine learning techniques are a remedy since they offer

the flexibility and adaptability to study data-rich environments (Goulet Coulombe et al., 2022) and have also

be proven to be useful in the prediction of asset risk premiums (Gu, Kelly and Xiu, 2020). The involved

high-dimensional real-time dataset is intended to resemble the potential information set of a professional

forecaster. Specifically, I use a quarterly macroeconomic and a monthly financial dataset. The machine

efficient benchmark, or ML expectations, outperforms survey expectations with sizable predictive gains.

Predictive power drops in crisis times but disproportionately stronger for survey expectations. This is a first

indication that ML expectations pick up heightened risk in contrast to survey expectations, leading to sizable

belief distortions. Although survey forecasters have in principle access to the same tools and information

as the machine, expectations differ strongly. In an additional specification, I also control for the survey

forecasters own forecast and still find predictive gains of the machine.

Equipped with these expectations, I construct belief distortions for Aaa and Baa credit spreads, which

align well with key historical episodes. I append these belief distortons series to a set of macroeconomic

variables as used in the contribution by Gilchrist and Zakrajšek (2012). This allows me to investigate the

dynamic responses to a financial shock identified via timing restrictions on the EBP, whereas belief distortions
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are allowed to react contemporaneously to the shock. A positive one standard deviation financial shock elicits

a jump in the EBP and causes an aggregate downturn. The surge in EBP is by about 20bp and real GDP

contracts by about 0.2 − 0.3%. The reaction of belief distortion indicates that agents stay initially optimistic

for one to two quarters before turning pessimistic in their evaluation of the future. A counterfactual exercise,

in which the response of belief distortions to the financial shock is set to zero at all horizons, reveals that

the transmission to the real economy is not affected but that credit spreads spike less strongly. Re-doing

the analysis with survey forecast errors instead of belief distortions, allows me to inspect the expectation

formation mechanism further. Here, we find the well-known pattern of dynamic overshooting (Angeletos,

Huo and Sastry, 2021). Initially, agents underreact to the structural shock before overreaction takes place.

These findings are robust to a number of specification choices.

The impulse response analysis points to two interesting facts. The dynamic responses of belief distortions

has an ex-ante perspective, showing how agents’ sentiment evolves in the future. Survey forecast errors, on

the other hand, allow to examine the reaction of agents to news ex-post. So, the first exercise shows that agents

evaluate the future too optimistically before turning pessimistic. The second exercise with survey forecast

errors reveals that agents initially underreact but then overreact in their belief formation. It is reassuring that

these responses are qualitatively similar, because this means that the ML expectations predict the realized

crash risk reasonably well. This is also in accordance with the evidence in Krishnamurthy and Muir (2017)

that credit spreads are generally too low prior to a financial crisis. Rational expectations models would need a

long sequence of negative shocks or quite sizable ones, which we do not observe in reality. As Maxted (2023)

shows theoretically, small financial shocks suffice in an environment of behavioral frictions. This aligns well

with the outcomes of the counterfactual experiment, which reduces the impact response of credit spreads. I

argue that agents do not realize the initial, smaller-sized shocks. Hence, they stay optimistic or underreact to

this news. Only after the sentiment switches due to another shock (e.g., the bankruptcy of Lehman Brothers

in the Great Financial Crisis), agents start to overreact to news and turn pessimistic.

The contribution of this paper is thus threefold. First, this paper shows that the belief formation process

in credit spreads is not rational. Specifically, credit spreads under- and overreact to new information on the

market. Second, I show that belief distortions on financial markets, measured through credit spreads, exist,

are economically sizable, and in line with narrative evidence. Belief distortions are ex-ante expectational

errors in beliefs and are constructed as the difference between machine efficient benchmark expectations and

survey expectations. Third, I evaluate the responses of belief distortions and survey forecast errors conditional
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on a financial shock. This allows me to investigate the belief formation mechanism on financial markets in

more detail.

The remainder of the paper proceeds as follows. The next section connects to the existing literature.

In section 3, I investigate the belief formation on financial markets and explain the findings with a stylized

model. In section 4, I construct the machine efficient benchmark and use these predictions to construct

subsequently belief distortions. I also discuss the diagnostics of the constructed series. This is followed by

the empirical exercise in section 5, where the dynamic responses to a financial shock are examined. Finally,

section 6 concludes.

2. Related Literature

This paper contributes to three strands of the literature. First, it relates to the literature on the interaction

between financial markets, the real economy, and the role of sentiments. While models based on financial

frictions sucessfully explain the onset of a financial crisis and its broader transmission, these models require

a long sequence of poor returns to trigger a shock strong enough to resemble a financial crisis and thus do

not match the pre-crisis evidence. The starting point of this literature is the financial accelerator framework,

which points to the important role of net worth and its inverse relationship to credit conditions (Bernanke,

Gertler and Gilchrist, 1999). More recent approaches show that credit conditions are also affected by financial

shocks on the enforcement constraint limiting the firm’s ability to borrow (Jermann and Quadrini, 2012), by

idiosyncratic uncertainty on investment payoffs leading to time-varying risk premia (Christiano, Motto and

Rostagno, 2014), or by liquidity mismatches leading to run-like behavior associated with financial panics

(Gertler, Kiyotaki and Prestipino, 2019). Akinci and Queralto (2022) explain financial crisis behavior in a

non-linear model with endogenous equity issuance of financial intermediaries. Models taking sentiments

into account can also succesfully match the pre-crisis evidence on low risk premia. Maxted (2023), for

instance, incorporates behavioral frictions alongside financial frictions into a real business-cycle model.1

The interaction of these frictions causes boom-bust cycles and thus belief-driven fluctuations. Similarly, the

model by Krishnamurthy and Li (2020) allows sentiments along financial frictions to play a role in financial

intermediation. They show that the model with only the frictional intermediation mechanism misses the

pre-crisis behavior, while adding sentiments to the model resolves this conundrum. This paper offers a semi-

1 See also the papers by Bianchi, Ilut and Saijo (forthcoming) and L’Huillier, Singh and Yoo (2021), which incorporate diagnostic
expectations in leading business cycle frameworks.
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structural approach and provides evidence that these mechanisms are active without relying on a fully-fledged

structural model.

Second, the paper is related to a number of papers concerned with using survey data in semistructural

macroeconomic models, in particular conditional on financial shocks. With respect to financial shocks, an

array of papers provide different specifications and identification schemes. While Gilchrist and Zakrajšek

(2012) introduce the EBP and provide an identification of unanticipated movements in this premium based

on timing assumptions, Furlanetto, Ravazzolo and Sarferaz (2019) develop a sign-restriction approach to

disentangle investment shocks (and other demand shocks) by imposing a co-movement in investment and stock

prices. Barnichon, Matthes and Ziegenbein (2022), however, are interested in the non-linear transmission

of financial shocks, while Boeck and Zörner (2019) investigate credit sentiment shocks in a non-linear

framework. Caldara et al. (2016) utilizes a penalty function approach to disentangle uncertainty shocks and

financial shocks. Regarding the use of survey data, an array of papers has investigated the macroeconomic

consequences of undue expectations or over-optimism in growth (Enders, Kleemann and Müller, 2021;

Benhima and Poilly, 2021; Beaudry and Willems, 2022). This paper investigates belief distortions conditional

on a financial shock and extends the usual analysis in dimensions to explore belief formation in more detail.

Third, the paper contributes to the literature on imperfect information and why economic agents make

systematic errors embedded in beliefs. These reasons include the presence of information frictions (Coibion

and Gorodnichenko, 2015), the use of extrapolative expectations (e.g., De Long et al., 1990, Barberis, Shleifer

and Vishny, 1998, or Barberis et al., 2015), the overweighting of personal experience (e.g., Malmendier and

Nagel, 2011 and Malmendier and Nagel, 2016), the overreaction to incoming news (e.g., Bordalo, Gennaioli

and Shleifer, 2018, Gennaioli and Shleifer, 2018, Bordalo et al., 2019, and Bordalo et al., 2020), the this-time-

is-different thinking (Reinhart and Rogoff, 2009), or the use of simple heuristics to forecast (e.g., Anufriev

and Hommes; Assenza et al., 2012; 2019). However, they all have in common that the presence of new

information is given too much or too little weight. This happens because agents only have limited attention

(neglecting the full information assumption) or new information is processed in a non-rational or behavioral

way (neglecting the rational expectation assumption). Angeletos, Huo and Sastry (2021) reconcile those

different streams and argue in favor of a pattern called dynamic overshooting – initial underreaction due to

informational frictions is followed by overreaction due to extrapolation. This paper corroborates the findings

of Bordalo et al. (2020) and Angeletos, Huo and Sastry (2021) but investigates the reaction to incoming news

in credit spreads. Some initial evidence is already provided by Bordalo, Gennaioli and Shleifer (2018), which
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shows the predictability of forecast errors and revisions through the current credit spread but abstains from

investigating the response to news through the regression framework of Coibion and Gorodnichenko (2015).

The paper is closely related to the work of Bianchi, Ludvigson and Ma (2022) but differs in two important

aspects. Methodologically, they provide a framework for belief distortions and use a regularized regression

based approach to construct a machine efficient benchmark. This paper builds upon this approach but also

utilizes non-linear modeling frameworks for the machine efficient benchmark. Empirically, they focus on

belief distortions in inflation and output, while this paper focuses on credit spreads. Furthermore, this paper

also investigates the dynamic interactions with key macroeconomic variables due to undue expectations.

3. Belief Formation on Financial Markets

This section provides empirical evidence on the belief formation process on financial markets and explains

the evidence through a stylized model. Having established that financial market expectations do not process

information rationally allows me to construct belief distortions in a next step. I start by testing the reaction

of survey expectation to new information using the procedure in Coibion and Gorodnichenko (2015) but

utilizing not only survey expectations data on the aggregate but also on the individual level (Bordalo et al.,

2020). The stylized model of private and public signals with diagnostic expectations explains the findings

and shows that belief distortions are related to future sentiment in response to news.

To characterize crash risk on financial markets, I am interested in the risk premium. Credit spreads are

a natural choice for measuring risk premia. According to Elton et al. (2001), credit spreads differ across

rating classes not only due to their risk premium, but also due to their expected default loss.2 Additionally,

a liquidity premium can arise in times of financial distress. To minimize the effect of the default premium,

I use Moody’s Aaa rated corporate bond yields.3 For this yield, there is also evidence that the liquidity

component did not rise during the subprime crisis (Dick-Nielsen, Feldhütter and Lando, 2012). I am also

re-doing the analysis with Moody’s Baa rated corporate bond yields to also gauge the effect of a higher

liquidity premium. From these bond rates a long-term government yield of similar maturity is deducted to

construct credit spreads.

2 The third component of credit spreads, the tax premium, arises because interest payments on corporate bonds are differently taxed
than those on government bonds, but this is disregarded in the analysis. Although they are an important influence in explaining
credit spreads, due to their inability to explain differences in credit spreads they are not of concern in this setting.

3 An interesting alternative is the excess bond premium (EBP) (Gilchrist and Zakrajšek, 2012), the residual of a micro-based
approach to credit spreads freed from firm-specific information on default risk. Unfortunately, this is not suitable for the current
framework due to unavailability of subjective expectations thereof.
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Survey expectations on credit spreads come from the Blue Chip Financial Indicators. The survey is

conducted on a monthly basis, asking around 40 panelists from major financial institutions about their

expectations regarding several financial indicators. Data is taken from the end-of-quarter month survey in

March, June, September, and December, which are released at the beginning of the month while the survey is

conducted at the end of the previous month. Forecasts are available for the current quarter 𝑡 and for quarters

𝑡 + 1 through 𝑡 + 4. The survey offers a cross-section of subjective forecasts of each panelists at each point in

time. Specifically, I use the consensus (median) forecast to construct the Aaa and Baa spread. Data on the

Aaa spread covers the period 1988Q1 to 2020Q1, while the time series is considerably shorter for the Baa

spread spanning from 1999Q1 to 2020Q1. Data sources and the exact construction of the survey expectations

of credit spreads are listed in Appendix A1.

Reaction to Incoming News

The empirical procedure of Coibion and Gorodnichenko (2015) and extended by Bordalo et al. (2020) works

as follows. I denote the ℎ-step ahead consensus forecast made at time 𝑡 for the future value of 𝑦𝑡+ℎ of a credit

spread with F𝑡 𝑦𝑡+ℎ. The consensus forecast is constructed with F𝑡 𝑦𝑡+ℎ = (1/𝐼)∑𝑖 F𝑖𝑡 𝑦𝑡+ℎ, where F𝑖𝑡 𝑦𝑡+ℎ is

the forecast of individual 𝑖 and 𝐼 > 1 is the number of forecasters. Forecast revisions at time 𝑡 of individual 𝑖

are defined as 𝐹𝑅𝑖𝑡 ,ℎ = (F𝑖𝑡 𝑦𝑡+ℎ − F𝑖𝑡−1𝑦𝑡+ℎ) and 𝐹𝑅𝑡 ,ℎ = (1/𝐼)∑𝑖 𝐹𝑅𝑖𝑡 ,ℎ follows likewise. Predictability

of forecast errors is measured by estimating the following consensus regression

𝑦𝑡+ℎ − F𝑡 𝑦𝑡+ℎ = 𝛽𝑐0 + 𝛽𝑐1FR𝑡 ,ℎ + 𝜂𝑐𝑡+ℎ, 𝜂𝑐𝑡+ℎ ∼ N(0, 𝜎2
𝑐,𝜂). (3.1)

If forecast errors are not predictable from forecast revisions, I cannot reject the null hypothesis of FIRE.

This essentially reduces to testing whether 𝛽1 = 0. Otherwise, overreaction (underreaction) is implied by a

negative (positive) coefficient 𝛽1. For instance, a positive coefficient 𝛽1 > 0 together with a positive forecast

revision, FR𝑡 ,ℎ > 0, implies that the consensus forecast is not optimistic enough. Bordalo et al. (2020) extend

this analysis by also analyzing forecast error predictability at the individual level. They propose to estimate

a pooled panel regression model,

𝑦𝑡+ℎ − F𝑖𝑡 𝑦𝑡+ℎ = 𝛽𝑝0 + 𝛽𝑝1 FR𝑖𝑡 ,ℎ + 𝜂𝑝𝑡+ℎ, 𝜂
𝑝

𝑡+ℎ ∼ N(0, 𝜎2
𝑝,𝜂), (3.2)

where the common coefficient 𝛽𝑝1 indicates whether the average forecaster under- or overreacts to their own

information. Again, if 𝛽𝑝1 = 0 then FIRE cannot be rejected. Furthermore, they also suggest forecaster-by-
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Table 1: Error-on-Revision Regressions.

Consensus Individual
𝛽𝑐1 SE Obs. 𝛽

𝑝

1 SE Obs. med(𝛽𝑖1) med(Obs.) 𝐼

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9)

h = 0
Aaa spread 0.00 0.15 129 −0.17 0.04 4,681 −0.15 24.0 124
Baa spread 0.12 0.17 85 0.04 0.04 2,691 −0.01 36.0 61

h = 1
Aaa spread 0.12 0.11 128 −0.19 0.02 4,451 −0.21 26.0 114
Baa spread 0.28 0.06 84 0.02 0.02 2,553 0.02 37.0 57

h = 2
Aaa spread 0.06 0.15 127 −0.21 0.02 4,309 −0.20 26.5 112
Baa spread 0.09 0.20 83 −0.06 0.02 2,487 −0.05 36.5 56

h = 3
Aaa spread 0.08 0.19 126 −0.20 0.02 4,134 −0.24 26.5 108
Baa spread −0.02 0.50 82 −0.17 0.03 2,403 −0.14 38.5 54

Notes: This table shows coefficients from forecast error on forecast revision regression. Column 1 to 6 show
the coefficients of consensus time series regressions and individual level pooled panel regressions together with
standard errors (SE) and number of observations (Obs.). Column 7-9 shows the median coefficients, median number
of observations and number of forecasters (𝐼) in forecaster-by-forecaster regressions. For consensus time series
regressions and pooled panel regressions, standard errors are Newey-West with the automatic bandwidth selection
procedure (Newey and West, 1994).

forecaster regressions,

𝑦𝑡+ℎ − F𝑖𝑡 𝑦𝑡+ℎ = 𝛽𝑖0 + 𝛽
𝑖
1FR𝑖𝑡 ,ℎ + 𝜂𝑖𝑡+ℎ, 𝜂𝑖𝑡+ℎ ∼ N(0, 𝜎2

𝑖,𝜂), 𝑖 = 1, . . . , 𝐼 . (3.3)

This yields a distribution of individual coefficients 𝛽𝑖1 (𝑖 = 1, . . . , 𝐼), where I focus on the median coefficient.

Since this results in varying sample sizes for the estimation (due to the different lengths of different forecasters

in the sample), I only keep forecasters with at least fifteen observations. Furthermore, I winsorize outliers.4

Results of the error-on-revision regressions are presented in Table 1. Looking at the coefficients from

the consensus regression, 𝛽𝑐1 > 0 indicates underreaction with varying statistical power. On the contrary,

coefficients from the pooled panel and individual level regression are consistently and precisely estimated

negative, pointing to overreaction. These findings are similar to the one presented in Bordalo et al. (2020).

This provides evidence to their explanation of individual overreaction, while the adjustment process is

characterized by rigidity in the aggregate. Since the information is not yet received by their peers, the

consensus forecast is slow to adapt. In particular, this form of rigidity only holds for both credit spreads

when looking at shorter horizons and vanishes at longer ones. These findings also corroborate the findings of

4 Here, I follow the approach taken by Bordalo et al. (2020). They exclude forecasts which are five interquartile ranges away from
the median. In case there is no variation in the interquartile range, I apply the interquartile range of the previous period. This
ensures consistency of the forecasts.

9



Angeletos, Huo and Sastry (2021) that dynamic overshooting is driving the dynamics. Taken at face value,

this provides strong evidence that information is processed in a non-rational manner on financial markets.

This is also consistent with the evidence presented in Bordalo, Gennaioli and Shleifer (2018) and Bordalo

et al. (2019). While the former look also into credit spread expectations, they average across horizons and only

use the consensus forecast. The latter provides evidence of stock market return expectations. Interestingly,

these findings also square with experimental evidence on stock market return expectations. Kocher, Lucks

and Schindler (2019) explain overpricing due to lack of traders’ self-control transmitting into irrational

exuberance in markets.

A Model of Private and Public Signals with Diagnostic Expectations

How can we explain both underreaction at the aggregate and overreaction at the individual level? This

section presents a stylized model of private and public signals, similar as in Bianchi, Ludvigson and Ma

(2022) but extended to include diagnostic expectations as in Bordalo et al. (2020). In the model, (professional)

forecasters not only use publicly available information but also a private signal to form a prediction. The

private signal contains a judgemental component. Suppose that forecasters observe a noisy, private signal 𝑠𝑖𝑡

of the unknown state variable 𝑦𝑡 ,

𝑠𝑖𝑡 = 𝑦𝑡 + 𝜀𝑖𝑡 , 𝜀𝑖𝑡 ∼ N(0, 𝜎2
𝜀), (3.4)

where 𝜀𝑖𝑡 is i.i.d. distributed across forecasters and over time. This specification captures heterogeneity in

information of individual forecasters. These individual forecasters also observe a vector of public signals

𝒙𝑡 ∼ N(0, 𝜎2
𝑥) with information up to time 𝑡.5 Forecasters predict the current unknown state using the public

information with 𝑦𝑡 = 𝒙′𝑡 𝜷 + 𝑢𝑡 , where 𝜷 is a set of parameters describing the statistical mapping from the

𝒙𝑡 (public information) to 𝒚𝑡 (unknown state). In the simplest case, the public signal evolves according to an

AR(1) process, i.e., 𝒙𝑡 = 𝑦𝑡−1 and 𝜷 = 𝜌,

𝑦𝑡 = 𝜌𝑦𝑡−1 + 𝑢𝑡 , 𝑢𝑡 ∼ N(0, 𝜎2
𝑢) (3.5)

where the disturbance 𝑢𝑡 is the unpredictable part of 𝑦𝑡 and constitutes the structural shock. Furthermore, the

disturbances 𝑢𝑡 and 𝜀𝑖𝑡 are mutually uncorrelated. The AR(1) setting yields convenient closed-form solutions,

although credit spreads may be better described by richer processes (e.g., using a VAR as in Coibion and

5 Hence, it is pertinent that all information is in real-time up to time point 𝑡. This is the information set the forecaster has in principle
access to.

10



Gorodnichenko, 2015 or with hump-shaped dynamics as in Fuster, Laibson and Mendel, 2010). Therefore,

in the subsequent empirical analysis, I use higher-order autoregressive processes and include macro and

financial factors formed from high-dimensional datasets. To sum up, forecasters do not directly observe the

current value of the unknown state 𝑦𝑡 but form a prediction by using a combination of both, the private and

the public signal. Due to their private signal, judgement plays a nontrivial role. Ultimately, they are interested

in a prediction of the unkown state 𝑡 + ℎ periods ahead.

A rational forecaster updates her beliefs via Bayesian updating. The conditional expectations are sum-

marized by a probability density 𝑓 (𝑦𝑡 | 𝑆𝑖𝑡−1), where 𝑆𝑖𝑡−1 denotes the entire history of signals observed by

forecaster 𝑖. In each period, the forecaster observes a new signal 𝑠𝑖𝑡 and updates her estimates of the current

state using Bayes rule,

𝑓 (𝑦𝑡 | 𝑆𝑖𝑡 ) =
𝑓 (𝑦𝑡 | 𝑆𝑖𝑡−1) × 𝑓 (𝑠𝑖𝑡 | 𝑦𝑡 )

𝑓 (𝑠𝑖𝑡 )
. (3.6)

Given that the shocks are Gaussian distributed, this yields the Kalman filter. A rational forecaster estimates

the current state with 𝑦𝑖𝑡 |𝑡 =
∫
𝑦 𝑓 (𝑦 | 𝑆𝑖𝑡 )𝑑𝑦 and forecasts future values using the AR(1) structure, thus

𝑦𝑖𝑡+ℎ |𝑡 = 𝜌
ℎ𝑦𝑖𝑡 |𝑡 .

Belief formation of the agents is prone to behavioral fallacies. Bordalo, Gennaioli and Shleifer (2018)

introduce the framework of diagnostic expectations, which accounts for judgement biases. In this belief

formation mechanism, agents’ beliefs are distorted by the representativeness heuristic. According to this

heuristic, a certain attribute is judged to be excessively common in a population when that attribute is

diagnostic for the population. It is diagnostic for the population, if this attribute occurs more frequently in the

given population than in a relevant reference population. Following Bordalo et al. (2020), the overweighting

of representative states is described by the distorted probability distribution

𝑓 𝜃 (𝑦𝑡 | 𝑆𝑖𝑡 ) = 𝑓 (𝑦𝑡 | 𝑆𝑖𝑡 )
(

𝑓 (𝑦𝑡 | 𝑆𝑖𝑡 )
𝑓 (𝑦𝑡 | 𝑆𝑖𝑡−1 ∪ {𝑦𝑖𝑡 |𝑡−1})

) 𝜃 1
𝑍𝑡
, (3.7)

where 𝑍𝑡 is a normalization factor that ensures that the distribution integrates to one. The first term in the

equation reflects to rational expectations done via Bayesian updating, as discussed before. The second term

describes the belief component. This means that the state 𝑦𝑡 is more representative or diagnostic at time

𝑡 if the signal 𝑠𝑖𝑡 received in this period raises the probability of that state relative to the case where the

news equals the ex ante forecast, 𝑠𝑖𝑡 = 𝑦𝑡 |𝑡−1. Furthermore, the parameter 𝜃 measures the severity of judging

according to the representativeness heuristic. If 𝜃 = 0, agents are fully rational. If 𝜃 > 0, memory is limited.
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Subsequently, the distorted distribution 𝑓 𝜃 (𝑦𝑡 | 𝑠𝑖𝑡 ) is inflated by the likelihood of representative states that

come to mind quickly, while it deflates the likelihood of nonrepresentative states.

Hence, I make use of slightly adapted versions of proposition 1 and 2 from Bordalo et al. (2020) in

the following. The propositions and proofs are in Appendix B. According to proposition 1, the distorted

time-varying mean is

F𝑖𝑡 𝑦𝑡 = 𝑦𝑖𝑡 |𝑡 + 𝜃𝐾
(
𝑠𝑖𝑡 − 𝑦𝑖𝑡 |𝑡−1

)
, (3.8)

where 𝐾 = Σ

Σ+𝜎2
𝜀

denotes the Kalman filter and Σ is constant over time and refers to the steady state variance

of the updating step in the Kalman filter. Here, 𝑦𝑖𝑡 |𝑡 refers to the rational update of the hidden state implied

by the Kalman filter, while the term in the parenthesis refers to the belief component. Specifically, a negative

relatization of 𝜀𝑖𝑡 leads to a lower value of 𝑠𝑖𝑡 and a possibly larger news component if the rational prediction

is quite different. The news component is the difference between the private signal and the rational forecast

in 𝑡 − 1, which is diagnostic of the state. Hence, an individual forecaster is updating past rational beliefs

𝑦𝑖𝑡 |𝑡 with the news component. If 𝜃 > 0, agents deviate from Bayesian updating and overreact to news.

This means that the news component is overweighted when constructing expectations. Interestingly, also the

signal-to-noise ratio plays a critical role here. If the private signal is extremely diffuse (𝜎2
𝜀 → ∞), the news

component (and thus behavioral frictions) is used to a continuously decreasing extent.

Can this model explain the evidence presented earlier? Remember that the error-on-revision regressions

in Table 1 display consistently positive coefficients at the consensus level, while the sign switches at the

individual level. These coefficients point to underreaction in the aggregate and to overreaction of the

individual forecaster. By using the second proposition of Bordalo et al. (2020), the sign of the regression

coefficients at the consensus and individual level can be determined using the diagnostic Kalman filter.

In particular, as long as signals are not too overweighted (𝜃 ∈ (0, 𝜎2
𝜀/Σ)) relative to the dispersion of

signals, the coefficient at the consensus level is positive. Again, if the private signal is extreme diffuse

(𝜎2
𝜀 → ∞), the extent of overreaction can be more pronounced and agents still underreact to very noisy

information. Furthermore, the individual level coefficient is unambiguously negative. Then, individual

forecasters overreact to incoming news while the diagnostic filter entails rigidity in consensus beliefs.

This shows that a model with noisy information and diagnostic expectations can square the evidence

presented so far. In a next step, I explore belief distortions in this model setup. Assume that one is interested

in the 𝑡 + ℎ-step ahead prediction of credit spreads. Then, agents use the subjective expectation formation
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mechanism F𝑡 𝑦𝑖𝑡+ℎ = 𝜌ℎF𝑡 𝑦𝑖𝑡 |𝑡 . We still assume a simple AR(1) structure, while this can be extended to

more complicated processes. Hence, the consensus diagnostic expectation at time 𝑡 is given by

F𝑡 𝑦𝑡+ℎ = 𝜌
ℎ

∫
F𝑖𝑡 𝑦𝑡𝑑𝑖 = 𝑦𝑡+ℎ |𝑡 + 𝜃𝐾

(
𝑦𝑡+ℎ |𝑡 − 𝑦𝑡+ℎ |𝑡−1

)
. (3.9)

This equation shows the distorted consensus estimate for the current state. Aggregation implies that 𝑦𝑡+ℎ |𝑡 is

the rational forecast of the hidden state, while 𝑦𝑡+ℎ |𝑡 − 𝑦𝑡+ℎ |𝑡−1 is the news component. Note that the news

component may be structural shock, such as a financial shock in the present case. In the aggregate, news is

combined with the rational forecast of the hidden state according to the Kalman filter, which incorporates

individual level information dispersion. Furthermore, the parameter 𝜃 governs the extent of overreaction due

to the representativeness heuristic.

As previously introduced, belief distortions are defined as the difference between survey and FIRE

forecasts (Bianchi, Ludvigson and Ma, 2022). Note that 𝑦𝑡+ℎ |𝑡 is the rational update of the hidden state

implied by the Kalman filter. Note, though, that the term E𝑡 𝑦𝑡+ℎ in the model equation truly represents the

FIRE forecast and is not subject to any of the biases. I assume that the machine efficient benchmark recovers

the FIRE forecast. Hence, belief distortions are defined as follows

𝑍𝑡 = E𝑡 𝑦𝑡+ℎ − F𝑡 𝑦𝑡+ℎ = E𝑡 𝑦𝑡+ℎ − 𝑦𝑡+ℎ |𝑡︸             ︷︷             ︸
bias

− 𝜃𝐾
(
𝑦𝑡+ℎ |𝑡 − 𝑦𝑡+ℎ |𝑡−1

)︸                      ︷︷                      ︸
reaction-to-news

. (3.10)

Belief distortions are thus a composite of two terms: a bias term and an reaction-to-news term. If the machine

benchmark truly recovers the true, underlying model (i.e., FIRE forecast) the bias is zero. More importantly,

the second term captures the news component, 𝑦𝑡+ℎ |𝑡 − 𝑦𝑡+ℎ |𝑡−1, which denotes underreaction as long as the

diagnosticity parameter 𝜃 is sufficiently small. Again, the signal-to-noise ratio plays a role when judging with

representativeness. In case, agents observe the signal perfectly (𝜎2
𝜀 → 0), and are not prone to behavioral

judgment (𝜃 = 0), the second term drops out. This motivates the dynamic analysis in which I examine the

responses of belief distortions to news (i.e., a structural shock).

This results in two predictions regarding belief distortions: (i) on average belief distortions are zero (no

bias), and (ii) belief distortions are potentially large in periods with a high amount of incoming information

or structural shocks. These shocks are then amplified if agents judge according to representativeness (𝜃 > 0)

and characterize undue expectations. The first prediction motivates the forecasting exercise, because the

machine efficient benchmark aims to resemble FIRE forecasts, which drives a potential bias towards zero.
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The second prediction, motivates the macroeconomic analysis: If belief formation is rational, the second

term should not react at all and belief distortions are zero in the presence of structural shocks.

4. Measuring Belief Distortions

This section intends to measure belief distortions on financial markets and is mainly concerned with the

construction of the machine efficient benchmark. If belief distortions arise systematically, this suggests that

financial markets do not work efficiently due to the presence of financial anomalies.6

This is best illustrated by Figure 1, which plots both actual credit spreads (black) and survey expectations

(blue) at the time of the financial crises. Both credit spread series start to increase gradually prior to the Great

Financial Crisis (GFC). A large increase in credit spreads is a strong indication that the economy transitions

into a financial crisis, which is consistent with the findings of Krishnamurthy and Muir (2017). Survey

expectations follow the overall trend but adapt sluggishly and are still optimistic in the run-up to the crisis,

neglecting tail risks. Credit spreads jump disproportionately after the Lehman collapse on September 15.

Survey expectations, however, do not react alike, because economic agents stay optimistic despite the surge

in risk premia (and thus underreact to news). If we replace actual credit spreads with its machine efficient

prediction, the sluggish adjustment of survey expectations gives rise to positive belief distortions. The reverse

is happening after the GFC, where survey expectations are still elevated while financial risk is already falling

again. Belief distortions arise because of a non-rational belief formation mechanism, which keep agents

optimistic and pessimistic for too long. As is clear from the stylized model, agents individually overreact to

incoming news (e.g., the collapse of Lehman) due to financial shocks. In periods of belief mismatches, belief

distortions in credit spreads arise. These observations, together with the earlier presented evidence on belief

formation, make clear that agents produce systematic errors in beliefs.

Belief distortions, denoted as 𝑍𝑡 , are defined as follows

𝑍𝑡 = E𝑡 𝑦𝑡+ℎ − F𝑡 𝑦𝑡+ℎ, (4.1)

where 𝑦𝑡+ℎ refers to the ℎ-step ahead credit spread under consideration (either the Aaa or Baa credit spread),

𝑡 indicates the time period. F𝑡 refers to the survey expectations operator, while E𝑡 refers to the FIRE operator.

The resulting difference is denoted as a distortion in beliefs at time 𝑡. In the following, the paper creates a

6 I follow here Brav and Heaton (2002, p. 575) in defining a financial anomaly as “a documented pattern of price behavior that is
inconsistent with the predictions of traditional efficient markets, rational expectations asset pricing theory.”
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Figure 1: Credit Spreads and Subjective Expectations.

(a) Aaa Spread.
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(b) Baa Spread.
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Notes: Credit spreads of Aaa and Baa rated bond yields to 10-year government bond yield and subjective survey expectations
around the GFC. Black horizontal line denotes the 2008Q4, the height of the financial crisis. Data comes from FRED and the
Blue Chip Financial Indicators.

machine efficient benchmark to construct FIRE forecasts. The paper develops an algorithm, which provides a

new out-of-sample prediction each time new information is added to the model. Once a prediction is formed,

belief distortions are constructed. Two steps are important to construct an machine efficient benchmark.

First, I have to choose an appropriate loss function to select the best performing prediction out of a pool

of prediction values. Second, the involved datasets have to be introduced, which resemble the potential

information set of professional forecasters.

Creating a Machine Benchmark

This leads to the construction of the machine benchmark to identify possible distortions in beliefs. Let

E𝑡 𝑦𝑡+ℎ denote either a forecast of the Aaa or Baa credit spread at horizon ℎ ≥ 1 predicted at time 𝑡. It is

thus imperative that the model of objective expectations for constructing E𝑡 𝑦𝑡+ℎ be as rich as possible in

information so that the measure does not miss pertinent information. Concurrently, the model has to be

parsimonious to avoid spurious estimates.

To address these issues, I follow recent advances in the machine learning literature for macroeconomic

forecasting (Goulet Coulombe et al., 2022). The recommendations are as follows: (i) caring about non-

linearities, (ii) using a factor model for dimensionality reduction, and (iii) performing cross-validation.

Hence, I proceed as follows. First, I use two very high-dimensional datasets: a real-time macroeconomic
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dataset and a monthly financial dataset.7 From these datasets, I separately construct diffusion indices with a

dynamic factor model. Second, I perform a horse-race of different specified linear and non-linear models and

estimators to enhance predictive performance. Specifically, I use the following estimators: Bayesian linear

regression with horseshoe (HS) shrinkage prior (Carvalho, Polson and Scott, 2010), the elastic net (EN,

Zou and Hastie, 2005), and Bayesian Additive Regression Trees (BART, Chipman, George and McCulloch,

2010). Third, additional model uncertainty is taken into account by different specifications of the model.

Before going into detail about the forecasting exercise, I introduce both datasets, which are in real-

time and constructed to resemble the potential information set of a professional forecaster. The real-time

macroeconomic and financial is obtained from the Philadelphia Fed’s Real-Time Dataset and the FRED. The

resulting real-time macroeconomic indicator dataset contains observations on 45 variables. Then, 31 financial

variables are added to the dataset, yielding a real-time dataset of 76 variables. The real-time macroeconomic

and financial dataset provides information on output and income, consumption and investment, trade and

government, money and prices, labor market and housing, and interest rates and spreads. Additionally, I also

use monthly financial data to pick up information from financial markets on a higher frequency. The dataset

consists of 147 monthly financial series measuring the behavior of a broad cross-section of asset returns

through valuation ratios, such as the price-earnings ratio or the dividend-price ratio, dividends and prices,

risk factors, and a broad class of different portfolios. This dataset is a version of the financial dataset used in

Jurado, Ludvigson and Ng (2015) to construct the financial uncertainty index and is also used in the analysis

of Bianchi, Ludvigson and Ma (2022) to create a machine benchmark to measure macroeconomic belief

distortions. The complete list of variables of both datasets is given in the Appendix A3 and Appendix A4.

I also have to clarify how true out-of-sample forecasts are constructed. At each time point 𝑡, I have a total

of 𝑇 = 𝑇𝑇 + 𝑇𝑉 observations available and want to construct a true out-of-sample one-step ahead prediction

for 𝑇 + 1. Furthermore, I use a set of different models M = {M1, . . . ,M𝑚} of cardinality 𝑚. How do I

decide on which model M𝑖 ∈ M to use? I simply choose the best-forecasting model according to a loss

function in a pseudo out-of-sample model validation exercise. This provides me with an ex-ante criterion for

model selection. For that, I run each model with a training sample of size 𝑇𝑇 and construct a one-step ahead

prediction for the validation sample of size 𝑇𝑉 = 1. The validation sample is always the most recent datapoint

7 Before the computation of the factors, the monthly financial dataset is transformed to a quarterly dataset. In each quarter, the
mid-of-quarter observation is used to align the information set of the machine as close as possible to the information set of the
individual forecaster. Survey expectations are released on the first day of the end-of-quarter month while the surveys are conducted
a couple of days earlier.
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in the overall sample available at time 𝑡. As a loss function, I choose the root mean-squared error (RMSE).

A symmetric loss function can be questioned as forecasters may have asymmetric loss functions (Capistrán

and Timmermann, 2009). Since survey forecast errors are close to zero this suggests that economic agents

do not systematically over- or underassess financial risk. Then, I re-run the best-fitting model to construct a

true out-of-sample forecast.

In its most general form, I denote the forecasting model as

𝑦𝑡+ℎ = 𝑓 (Z𝑡 ) + 𝜀𝑡+ℎ, 𝜀𝑡+ℎ ∼ N(0, 𝜎2
𝑡+ℎ), ℎ ≥ 1 (4.2)

where the 𝐾 × 1 vector Z𝑡 denotes the information set of the model. I use three different estimators, two

linear and a non-linear one. These look as follows

HS: 𝑓 (Z𝑡 ) = Z
′
𝑡𝑩ℎ,

EN: 𝑓 (Z𝑡 ) = Z
′
𝑡𝑩ℎ,

BART: 𝑓 (Z𝑡 ) =
𝑆∑︁
𝑠=1

𝑔𝑠 (Z𝑡 |T𝑠, 𝝁𝑠),

(4.3)

where both linear estimators estimate the coefficients summarized in 𝑩ℎ, while the BART model is composed

of 𝑆 distinct regression trees, each equipped with a single regression tree function 𝑔𝑠, the corresponding tree

structure T𝑠, and the parameters at the terminal nodes 𝜇𝑠. In what follows, and in consistency with Chipman,

George and McCulloch (2010), I cross-validate over 𝑆 = {50, 250} in all our empirical applications. In the

baseline specification, Z𝑡 = (1, 𝑦𝑡 , . . . , 𝑦𝑡− 𝑗+1,𝑮𝑡 , . . . ,𝑮𝑡− 𝑗+1) includes an intercept and up to 𝑝 lags of both

the endogenous variable and additional factor information in an 𝑟𝐺-dimensional vector 𝑮𝑡 . In particular, this

vector contains factors from the two involved datasets 𝑮𝑡 = ( 𝒇𝑀
𝑡, 𝑓 𝑖𝑛𝑎𝑙

, 𝒇 𝐹
𝑡, 𝑓 𝑖𝑛𝑎𝑙

), where 𝒇𝑀
𝑡, 𝑓 𝑖𝑛𝑎𝑙

constitutes

factors from the real-time macro dataset and 𝒇 𝐹
𝑡, 𝑓 𝑖𝑛𝑎𝑙

denotes factors from the monthly financial dataset. The

vector of factors also contains non-linear versions, respectively. Last, 𝜀𝑡+ℎ denote Gaussian innovations of

the model. For the exact construction of the factors and the estimation procedures, Appendix C provides the

details.

The Bayesian linear regression specification conveniently nests all model specification that are used in

the forecasting exercise. In particular, it nests the random-walk (RW), a wide variety of autoregressive (AR)

processes, and the full specification is an autoregressive distributed lag (ADL) model. When using the EN

or BART, I use the full information set. In all specifications, I fix the number of factors 𝑟𝐺 = 10, allowing

eight linear factors and two non-linear versions to enter the specification for each dataset. Furthermore, I
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vary the amount of lags 𝑝 = {1, 2}. The Bayesian linear regression may also feature a stochastic volatility

specification in the second-moment. This yields in total 𝑚 = 13 different models in the set of models M.8

The exact model specifications and the description of the different estimators is suspended to Appendix C.

In all cases, I compute one-step up to four-step ahead forecasts in a direct forecasting fashion. For both

spreads, the sample size of the training and validation sample is kept constant at 𝑇 = 67 quarters across the

forecasting exercise. This yields an external evaluation sample from 1988Q1 to 2020Q1 of length𝑇𝑎𝑎𝑎 = 129

for the Aaa credit spread, while the true out-of-sample forecasts are recorded from 1999Q1 to 2020Q1 with a

length of𝑇𝑏𝑎𝑎 = 85 for the Baa credit spread. The external evaluation sample is determined by the availability

of survey forecasts. Hence, the first training and validation sample starts in 1971Q1 (Aaa credit spread) and

1982Q1 (Baa credit spread). Bayesian estimations are based on 25,000 draws from the posterior distribution,

where I discard the first 10,000 draws and use a thinning factor of 5. This leaves me with 5,000 draws

from the respective posterior distribution. Furthermore, cross-validation is implemented for both machine

learning techniques, the EN and BART. Specifically, cross-validation is not implemented in the usual K-fold

fashion but in a timeslice fashion. Contrary to K-fold cross-validation, which draws random subsamples

from the total sample to construct training and estimation sample, the timeslice validation procedure creates

sample splits, which takes the inherent structure of time-series (dependency over time) of the observations

into account and constructs sample splits going forward until the last observation in the (training) sample.

Additionally, I also explore an alternative, possibly more interesting, specification. In this specific-

ation, I directly control for the subjective forecaster’s information set by controlling for the consensus

survey forecast. Hence, this specification allows me to infer whether the machine really improves upon

the survey expectation. Nevertheless, this comes against a cost. It drastically restricts the sample due

to the rather short time series of survey expectations. Hence, the training and validation sample is only

𝑇𝑎𝑙𝑡 = 40 and start in 1995Q2 for the Aaa credit spread and only in 2010Q1 for the Baa credit spread..

The external evaluation sample thus reduces to 𝑇𝑎𝑎𝑎,𝑎𝑙𝑡 = 100 and 𝑇𝑏𝑎𝑎,𝑎𝑙𝑡 = 41.9 The specification of

Z𝑡 = (1, F(𝑘)𝑡 𝑦𝑡+ℎ, 𝑦𝑡 , . . . , 𝑦𝑡− 𝑗+1,𝑮𝑡 , . . . ,𝑮𝑡− 𝑗+1,𝑾𝑡 , . . . ,𝑾𝑡− 𝑗+1) includes also the 𝑘th percentile of the

survey forecast distribution. The superscript (𝑘) denotes the coefficients corresponding to adding the 𝑘-th

percentile of the survey forecast distribution to the specification. Furthermore, an 𝑟𝑊 -dimensional vector 𝑾𝑡

8 The results also hold when the model space is increased significantly, by allowing for more lags and including different sets of
covariates from the baseline model.

9 While the sample length is definitely too short for the Baa credit spread expectations, I provide robustness with respect to the Aaa
credit spread belief distortions of this specification in the macroeconomic model. See also the discussion in the sensitivity checks
in subsection 5.6.
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Table 2: Forecasting Evaluation.

h=1 h=2 h=3 h=4
Aaa spread Baa spread Aaa spread Baa spread Aaa spread Baa spread Aaa spread Baa spread

Forecasting Performance
RMSEF 0.230 0.449 0.296 0.615 0.343 0.720 0.386 0.788
RMSEE 0.193 0.364 0.278 0.535 0.309 0.772 0.369 0.852
min [RMSE] 0.192 0.370 0.287 0.605 0.322 0.632 0.343 0.696

Ratios
RMSEE/RMSEF 0.837 0.810 0.941 0.870 0.901 1.073 0.957 1.081
RMSEE/min [RMSE] 1.005 0.984 0.968 0.885 0.959 1.222 1.076 1.225

Alternative Specification
RMSEF 0.240 0.268 0.315 0.161 0.362 0.192 0.408 0.334
RMSEE 0.202 0.301 0.284 0.366 0.356 0.37 0.376 0.53
RMSEE/RMSEF 0.844 1.121 0.901 2.273 0.983 1.927 0.922 1.585
RMSEE/min [RMSE] 1.028 1.082 0.981 0.927 1.132 0.948 1.053 1.127

Best-Fitting Models (pseudo)
RW 17 20 35 22 41 29 41 28
AR 29 14 22 16 20 12 20 17
ADL 29 23 23 15 21 10 26 13
EN 19 16 23 13 23 17 26 13
BART 35 12 26 19 24 17 16 14
Notes: Forecasting evaluation via RMSEs of objective and subjective expectations. The table provides RMSE on forecasting
performance, and RMSEs ratios. The alternative specification additionally controls for subjective expectations. It also provides
which are the best-fitting models in the pseudo out-of-sample exercises, where the following models are considered: RW - random
walk, AR - autoregressive model, ADL - autoregressive distributed lag model, EN - Elastic Net, BART - Bayesian Additive Regression
Trees.

of additional information is added to the specification. This vector controls for past survey expectations and

various distributional quantities of the survey forecast distribution. The details of the specification are to be

found in Appendix C.

For the evaluation of the forecasts, I use RMSEs of the forecast errors of both, objective and subjective,

expectations, as follows

RMSEF = (1/𝑇𝑖)
𝑇𝑖∑︁
𝑡=1

√︃
(F𝑡 𝑦𝑡+ℎ − 𝑦𝑡+ℎ)2, ∀ℎ, (4.4)

RMSEE = (1/𝑇𝑖)
𝑇𝑖∑︁
𝑡=1

√︃
(E𝑡 𝑦𝑡+ℎ − 𝑦𝑡+ℎ)2, ∀ℎ. (4.5)

These statistics are presented in Table 2. The table presents RMSE of the survey and ML expectations and

the minimum RMSE of the best-forecasting model (from an ex-post perspective) along with ratios of these

RMSEs. The same outcomes are also provided for the alternative specification, which I discuss further below.

Last, the table also shows the best-fitting models in the pseudo out-of-sample exercise, which is the ex-ante
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criterion for constructing objective expectations. The outcomes of this exercise reveal the following. First,

it is reassuring that the machine works better than the survey forecasts, as can be directly seen from the

ratio RMSEE/RMSEF. For instance, the ratio for the one-step ahead Aaa credit spread is 0.837 and for the

Baa credit spread 0.810. Interestingly, the ratio is rather stable across both credit spreads. Only at longer

horizons, the survey forecasts of the Baa credit spread are on par with the machine efficient benchmark.

Second, the table also reveals that the ex-ante out-of-sample forecasting procedure performs well against the

ex-post best-forecasting model. This is visible from the ratio RMSEE/min [RMSE], where min [RMSE] is

the minimum of the RMSEs of all considered models ex-post. The RMSEs of all models are shown in Table

H1 in Appendix H, where the minimum is indicated with bold numbers. The table in the appendix reveals that

autoregressive processes perform well for short forecasting horizons, while BART dominates longer-term

forecasts. However, these RMSEs are computed with an informational advantage. Third, the table also reveals

the number how often a particular model was the best-fitting model in the pseudo out-of-sample forecasts.

This highlights the inherent model uncertainty in the estimation problem, because each model class is used

quite frequently.

The results of the alternative specification are also presented in Table 2. Here, I use the 𝑘 = 50th percentile

of the distribution. A few interesting things have to be noted. Generally, RMSEF are slightly higher for the

Aaa credit spread and much lower for the Baa credit spread. However, the machine benchmark offers RMSE

in the ballpark as in the full specification. Hence, the ratio is below unity for the Aaa spread and above unity

for the Baa spread. These changes are explained through the dynamics in the RMSE, which results from

the rather short external evaluation sample for the Baa spread. This external evaluation sample also does

not cover the GFC but only starts in 2010Q2. Therefore, this sample period covering the aftermath of the

GFC until the present may not be ideal to measure belief distortions. Overall, evidence suggest that belief

distortions still persist while controlling for the forecaster’s information set.

In Figure 2, I want to further shed light on the forecasting performance. It shows a time-series plot of the

RMSEs of both survey and ML expectations of the respective credit spread for the one-step ahead forecast.

First, survey RMSEs lay on top of the machine RMSEs almost throughout the sample. This is further backed

by the ratio of the RMSEs, which is clearly below unity. Second, forecasting performance decreases in

crisis times, indicated by the NBER recession dates. This holds specifically for the GFC. Third, and most

importantly, the survey RMSE spikes in crisis times further upwards than the machine RMSE. This is clear
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Figure 2: Forecasting Evaluation.

(a) Aaa spread.

1988 1992 1996 2000 2004 2008 2012 2016 2020

0.0

0.2

0.4

0.6

0.8

1.0

1.2 machine predictions
survey expectations
Ratio: 0.837

(b) Baa spread.
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Notes: RMSEs of out-of-sample forecasts of objective (black) and subjective (blue) expectations. Gray bars indicate the
NBER recession dates.

evidence that survey participants forecast on average worse than the machine benchmark in a crisis, which

gives rise to belief distortions.

Lastly, I also check whether the machine predictions do react to news by estimating error-on-revision

regressions. Results in Table 3 present the results of this exercise. While I do find very small and insignificant

coefficients for the Aaa spread along all horizons and the Baa spread for ℎ = 1, coefficients for the Baa spread

at longer horizons are larger in absolute value and statistically significant for ℎ = 2. Hence, ML expectations

do neither for the Aaa spread nor for the Baa spread under- or overreact at short horizons. At longer horizons,

the picture is more diffuse for the Baa spread.

To sum up, creating a machine benchmark pays off. Generally, credit spreads are extremely forward-

looking variables and commonly used as recession indicators. Hence, it comes as no surprise that predictive

performance worsens in times of crisis. Furthermore, the strong mean-reverting behavior in credit spreads

explains that higher horizon forecasts are more on par with the machine benchmark. In the short run,

however, using the machine leads to considerable forecasting improvements against the survey forecasts. In

this exercise, I only consider point forecasts to measure belief distortions. The objective of this exercise is

to create a machine benchmark of an unbiased point forecast. Other aspects of forecasting, e.g., predictive

accuracy, is of minor importance here. The loss function in Equation (4.4) and Equation (4.5) takes only

point predictions into account.
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Table 3: Error-on-Revision Regressions with Machine Predictions.

h=1 h=2 h=3
𝛽𝑧1 SE 𝛽𝑧1 SE 𝛽𝑧1 SE

Variable (1) (2) (3) (4) (5) (6)

Aaa spread −0.022 0.062 −0.034 0.114 −0.010 0.141
Baa spread −0.018 0.081 −0.085 0.026 0.215 0.217
Notes: This table shows coefficients from forecast error on forecast revision regres-
sion with machine predictions. Standard errors are Newey-West with the automatic
bandwidth selection procedure (Newey and West, 1994).

Construction of the Belief Distortion Series

After the evaluation of the forecasting performance of both survey and ML expectations, I can construct a

quarterly series of belief distortions as defined in Equation (4.1). For the construction of the belief distortion

series, I use the difference between the ML and survey expectations. While I construct the difference between

the survey and ML expectation at each horizon, I focus in the main analysis on the one-step ahead belief

distortion shown in Figure 3.

The belief distortion series matches well with narrative evidence for key historical episodes. For instance,

both series exhibit positive belief distortions on the onset of the GFC. In particular, I observe a positive spike

at the beginning of the crisis in mid-2007 after the bursting of the mortgage-backed security bubble, and a

negative spike at its climax after the bankruptcy of Lehman Brothers. As discussed earlier, in both instances

economic agents individually overreact but underreact in the aggregate, resulting in a spike of the series.

While economic agents were optimistic for too long (resulting in a lower expectation of the credit spread) in

the beginning, the were also pessimistic for too long at the end of the crisis. Specifically, at the beginning of

the crisis period sentiment stays elevated for quite some time before turning extremely negative. This fits into

the story presented in Bordalo, Gennaioli and Shleifer (2018) that a currently high spread is indicative that

future spreads are too high. The Lehman bankruptcy per se did not cause macroeconomic troubles (financial

risk was already elevated before), but economic agents were uncertain about the signal about financial risk.10

Higher dispersion in beliefs allows for possibly stronger ex-ante expectational errors which strongly affects

belief formation. In comparison, the Dot-com bubble led to much smaller distortions in beliefs. Other key

10 It is not shown here, but disagreement (defined as the standard deviation) among forecasters about credit spreads have risen
strongly in the crisis.
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Figure 3: Belief Distortions.

(a) Aaa Belief Distortions.

1988 1992 1996 2000 2004 2008 2012 2016 2020

−0.4

−0.2

0.0

0.2

0.4

Lehman Collapse

Dot−com Bubble

MBS CrisisBlack Wednesday

Sovereign Debt Crisis

Trump
Brexit

(b) Baa Belief Distortions.
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Notes: Belief distortions in the Aaa and Baa risk spreads. Gray bars indicate the NBER recession dates. Key historical
episodes are delineated in the figure.

historical events, such as the Sovereign Debt Crisis in Europe, the election of Trump, or the referendum on

Brexit have not led to a considerable deviation in belief distortions.

Besides the narrative assessment, I also perform some simple diagnostic checks of the validity of the

series for measuring belief distortions. Results can be found in Appendix F. Both series fluctuate around

zero, presenting no evidence of a bias in belief distortions. From a statistical standpoint, the belief distortion

series show no evidence of autocorrelation or predictability. Regarding the latter, I perform a series of

Granger-causality tests in Table F1, which test whether the belief distortion series can be forecasted by a set

of macroeconomic variables. There is no evidence of any power in forecasting both belief distortion series. I

also examine correlations to other structural shocks from the literature in Figure F2. Specifically, I compare

the belief distortions series to financial shocks, uncertainty indicators, and macroeconomic shocks. To start

with the latter, correlations to other macroeconomic shocks (monetary, fiscal, oil) are low and statistically

not significant. On the contrary, correlations are positive and statistically significant for various uncertainty

indicators and financial shocks. For instance, correlations go up to 𝜌 ≈ 0.35 for the Aaa belief distortions

series, and are even higher to the Baa belief distortion series with 𝜌 ≈ 0.60. However, the numbers presented

here are only unconditional correlations. This motivates the next step of the analysis, in which I examine the

conditional response of belief distortions to a financial shock.
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5. Dynamic Responses to a Financial Shock

In this section, I analyze the dynamic responses of belief distortions conditional on a financial shock. For

the estimation and identification of financial shocks, I follow the approach of Gilchrist and Zakrajšek (2012).

Their identification of financial shocks rests on the excess bond premium (EBP), which represents the cyclical

changes between measured default risk and credit spreads. Specifically, identification is achieved via timing

assumptions. In the baseline specification eight variables are included in the following order: (i) log real

gross domestic product (GDP), (ii) log real consumption, (iii) real investment, (iv) prices measured with the

log GDP deflator, (v) the EBP, (vi) the log S&P 500 as a stock market index, (vii) the effective (nominal)

federal funds rate, and (viii) the belief distortion series. The identifying assumption implied by this recursive

ordering is that innovations to the EBP affect economic activity and prices only with a lag, while the stock

market, the policy rate, and belief distortions can react contemporaneously to the financial shock. For the

current analysis, there are numerous appealing facts of this shock. First, it is widely accepted as unanticipated

movements in financial frictions. Second, it drives a significant component of the business-cycle variation in

macroeconomic activity and third, this shock is relevant for the belief formation on financial markets.

The sample is limited due to the length of the belief distortion series. The sample including the Aaa

spread spans from 1988Q1 to 2020Q1, while the one including the Baa spread spans from 1999Q1 to

2020Q1. The reason for using quarterly data is due to the nature of the survey forecasts for computing

the belief distortions. Examining both dynamic responses - Aaa and Baa belief distortions – allows me

to investigate belief distortions of credit spreads with potentially higher default or liquidity premia. In a

robustness check, I investigate whether the different samples influence the outcomes and show that this is

not the case. The Bayesian VAR is then estimated over the respective sample period, using four lags of

each endogenous variable and a constant as a deterministic term. A detailed overview on the data, the exact

construction, and its sources can be found in Appendix A.

Econometric Approach

Let {𝒚𝑡 }𝑇𝑡=1 denote an 𝑀-dimensional time series process. Consider the following reduced-form VAR(p)

model

𝒚𝑡 = 𝒄 + 𝑨1𝒚𝑡−1 + . . . + 𝑨𝑝𝒚𝑡−𝑝 + 𝒖𝑡 , 𝒖𝑡 ∼ N𝑀 (0,𝚺𝑡 ), (5.1)
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where 𝑝 is the lag order, 𝒄 is an 𝑀 × 1 vector of constants, 𝑨1, . . . , 𝑨𝑝 are 𝑀 × 𝑀 coefficient matrices, and

𝒖𝑡 denotes an 𝑀 ×1 vector of reduced-form Gaussian distributed innovations with a time-varying covariance

matrix 𝚺𝑡 . For the details on the estimation of the VAR, see Appendix D.

For the identification of the VAR, I rely on timing restrictions. Hence, reduced-form innovations are

related to the structural shocks following 𝒖𝑡 = 𝑺𝜺𝑡 , where 𝜺𝑡 denotes the vector of structural shocks and 𝑺

corresponds to the lower Cholesky factor of the covariance matrix, i.e., �̃� = 𝑺𝑺′ holds. Here �̃� denotes the

time-varying mean of 𝚺𝑡 . Due to the ordering of the variables, the imposed timing restrictions are fulfilled

and let 𝒔5 be the fifth column of 𝑺, which yields the impact vector of an structural innovation to the EBP.

For the Bayesian estimation of the VAR, I rely on the Minnesota prior setup on the linear coefficients (Doan,

Litterman and Sims, 1984; Litterman, 1986; Sims and Zha, 1998). In this framework, I assume a Gaussian

prior distribution on the coefficients. The Minnesota prior specifies the prior belief that macroeconomic

time series follow a priori a random walk. Additionally, it imposes the belief that higher-order lags are less

important and thus closer linked to a value of zero. Practically, this means that the variance is smaller for

coefficients on further lags. Finally, I impose that little is known about the deterministic term, so that the

variance on these terms may be large. The stochastic volatility specification allows for changing variances

over time, controlling for heteroskedasticity. This is of particular importance in the sample I consider here

which is driven by unusually large shocks. Clark (2011) shows that adding stochastic volatility to a vector

autoregression significantly improves its fit and forecasting performance. In Appendix D, I write down the

prior specification in more detail.

Impulse Response Analysis

I now present the results from the baseline VAR model. The VAR is estimated in (log-)levels, a constant

is added as a deterministic term, and the lag order is set to 𝑝 = 4. All models considered are based on

25,000 draws from the posterior distribution, where I discard the first 15,000 draws as burn-ins. Additionaly,

I discard ex-post all non-stationary draws to ensure the stationarity of the VAR. In Appendix G, I report

convergence diagnostics and the share of retained draws in each of the considered models.

Figure 4 presents the impulse responses to a financial shock, normalized to a one standard deviation shock

in the EBP. Real GDP, real consumption, real investment, the GDP deflator, and the stock market index are in

logs and the responses can thus be interpreted as elasticities. The responses of the EBP, the federal funds rate,

and belief distortions are in percentage points. The solid black lines are the posterior median and the gray
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Figure 4: Impulse Response Functions to a Financial Shock (Belief Distortions).

(a) Model with Aaa Belief Distortion.
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(b) Model with Baa Belief Distortion.

Real GDP

0 4 8 12 16 20 24

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

Real Consumption

0 4 8 12 16 20 24

−0.4

−0.3

−0.2

−0.1

0.0

Real Investment

0 4 8 12 16 20 24

−2.0

−1.5

−1.0

−0.5

0.0

0.5

GDP Deflator

0 4 8 12 16 20 24

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

Excess Bond Premium

0 4 8 12 16 20 24

−0.1

0.0

0.1

0.2

S&P 500

0 4 8 12 16 20 24

−4

−3

−2

−1

0

1
Federal Funds Rate

0 4 8 12 16 20 24

−0.2

−0.1

0.0

0.1

Baa Belief Distortions

0 4 8 12 16 20 24

−0.05

0.00

0.05

Notes: Impulse response functions of the baseline VAR. Black line denotes median response while gray shaded areas denote
the 68/80/90 percent confidence intervals. The responses of real GDP, real consumption, real investment, GDP deflator, and
the stock market index are scaled in percent, while the excess bond premium, the federal funds rate, and belief distortions are
scaled in percentage points.
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shaded areas are 68, 80, and 90 percent confidence bands. Impulse responses are computed for a horizon of

24 quarters.

The financial shock causes an increase in the EBP, standardized to one standard deviation. An unanti-

cipated increase in the EBP elicits a surge of about 20 basis points (bp); 17bp in the model with Aaa belief

distortions and 21bp in the model with Baa belief distortions. This causes a significant and long-lasting

contraction of economic activity. Across both models, the (log-)level of real GDP bottoms out at about

0.2 − 0.3 percent below trend. The consequences for real investments are far more detrimental, amounting

to a −1.3% change at maximum. Real consumption, however, moves similarly to real activity. Prices react

more muted and show distinct differences across both models, although point estimates show deflationary

tendencies.11 The rather muted response of prices aligns with the findings of Del Negro et al. (2020) who

point to a flattening of the Phillips curve. Both models offer a pronounced decline in stock prices by about

1.5% on impact. The effects bottom out at −2.8% before gradually returning back to the steady state. Actions

taken by the central bank show a more delayed but accomodating reaction via the federal funds rate.12

The main innovation here is to append the belief distortion series to the specification. The pattern

of the impulse response across both models is similar. Belief distortions are initially positive for a short

period (about 1-2 quarters) before turning negative about one to two years after the shock. Note that belief

distortions are defined as the ML expectations minus the survey expectations. Hence, a positive belief

distortion means that survey expectations are below ML expectations or in other words: survey participants

evaluate the future more optimistically than the machine efficient benchmark (since a lower credit spread

indicates easier financing conditions). These results indicate that agents stay initially optimistic in their

evaluation of the future despite the adverse financial shock. Only after a couple of periods, their evaluation

turns pessimistic. This highlights the important mechanism of beliefs conditional on a shock and supports

the view of belief-driven economic fluctuations.

The macroeconomic effects are in line with the literature on financial shocks. Using almost the same

specification, Gilchrist and Zakrajšek (2012) find that an increase in the EBP of about 20bp leads to a

reduction in the level of real GDP of about 0.5 percentage points. Barnichon, Matthes and Ziegenbein (2022)

find similar effects using the EBP and examining the nonlinear nature of financial disruptions. Similarly,

11 Differences with respect to prices is due to the different sample lengths. In a robustness check, I show that prices react similarly
in a model featuring Aaa belief distortions but with the same (shorter) sample length as in the model with Baa belief distortions.
See also Figure I1.

12 Again, differences arise between the models. This are entirely due to the different sample lengths, see also the robustness check
in Figure I1.
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Figure 5: Counterfactual Impulse Response Functions to a Financial Shock (Belief Distortions).

(a) Model with Aaa Belief Distortion.
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(b) Model with Baa Belief Distortion.
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Notes: Impulse response functions of the baseline VAR. Black line denotes median response while gray shaded areas denote
the 68/80/90 percent confidence intervals. The red line with diamonds denotes the counterfactual response. The responses of
real GDP, real consumption, real investment, GDP deflator, and the stock market index are scaled in percent, while the excess
bond premium, the federal funds rate, and belief distortions are scaled in percentage points.

Furlanetto, Ravazzolo and Sarferaz (2019) find a reaction of GDP of about 2 − 4% after a one-standard

deviation financial shock identified with sign-restrictions. Furthermore, the work by López-Salido, Stein and

Zakrajšek (2017) finds a 2% change of real GDP per capita when a unit change in the Baa spread happens.

Observed standard deviations of the Aaa or Baa spread correspond to values in the range of 0.5 − 0.7%,

implying a negative GDP response of 0.6 − 0.8% after an autonomous change in beliefs. Caggiano et al.

(2021) disentangle financial uncertainty shocks from financial shocks and their shocks are also similar in

magnitude. This also highlights the important role of financial uncertainty in the shock transmission.

Counterfactual Experiment

Since I have shown that belief distortions react dynamically to the financial shock, it is interesting to ask the

following hypothetical question: What happens to the transmission of the financial shock if agents are not
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distorted in their belief formation mechanism? To answer this, I construct a counterfactual in which I shut

off the response of belief distortions to the financial shock. To do so, I use the structural scenario analysis

framework of Antolin-Diaz, Petrella and Rubio-Ramirez (2021). The impulse responses of belief distortions

are constrained to be zero at all horizons. In order to satisfy these constraints, I allow for additional structural

shocks. Specifically, because I do not identify any other shock I use the combination of all unidentified

shocks to offset the response of the belief distortion series. The details on the exact implementation of

the counterfactuals are provided in Appendix E. Additionally, I append the respective credit spread to the

specification (after the EBP). This allows me to gauge the effects of optimism and pessimism measured

through the reaction of belief distortions directly on the respective credit spread. Otherwise, the specification

is unchanged. For the sake of brevity, I only report four out of nine impulse response functions along with its

counterfactual response.

Results are presented in Figure 5. In the appendix, I check the plausibility of the counterfactuals in

Figure E1 and report the full set of impulse responses in Figure E2. The exercise reveals some interesting

facts. First, the response of the excess bond premium is not affected in the model with Aaa belief distortions

and only slightly in the model with Baa belief distortions. Hence, the financial shock itself is not strongly

affected by sentiments. Second, the response of GDP points to the fact that the transmission of the financial

shock to the real economy is not affected by sentiments. Once a financial shocks is realized, it transmits to

the real economy as suggested by the financial accelerator framework. In the model with the Baa spread,

there is even a sizable effect for real GDP for a couple of quarters. Third, in both models the credit spread

itself is reduced on impact in the counterfactual scenario. This effect is again stronger in the model with Baa

belief distortions but also clearly visible in the model with Aaa belief distortions. It is also possible that there

is an upward bias due to a higher default premium present in the model with Baa belief distortions/spreads.

Still, this suggests that sentiments are at least partly driving the uptick in the respective credit spread.

This corroborates the theoretical findings of Maxted (2023) who highlights the role of behavioral frictions

alongside financial frictions. Exactly these wrongly formed expectations cause credit spreads to be too low

in the run-up, and too high in the event of a financial crisis. Hence, belief distortions create an environment

in which a crisis becomes more likely in the case of an adverse financial shock.
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Quantitative Importance

As a next step, I analyze the quantitative importance of the financial shock. This analysis reveals how much

of the variation in the variables in the VAR system is explained by the financial shock. Figure 6 presents the

results. Initially, a financial shock explains a sizable share of the movements in the EBP before it stabilizes at

around 40%. The financial shock also explains a large share (about 30%) of the reaction of the stock market.

With respect to the real aggregates, the financial shock explains about 20% of real GDP, real consumption,

and real investment in the long-run. Again, differences arise with respect to prices. In the model with Aaa

belief distortions almost no variation in prices is explained, while the explained share in the model featuring

Baa belief distortions sums up to 20%. The financial shock explains about 10% of the variation in the federal

funds rate and the respective belief distortion series. Regarding belief distortions, this is not suprising since

the series are characterized by ex-ante expectational errors, which should move only due to reaction to news.

News arise due to a variety of reasons and from different sources of which an unanticipated tightening of the

EBP is only one (useful) example.

To compare the findings to the literature, usually 10-40% of the movement in real activity is explained by

financial shocks. For instance, Gilchrist and Zakrajšek (2012) explain about 11% of the variation in output

after a shock to the EBP. Furlanetto, Ravazzolo and Sarferaz (2019), however, explain up to 30% of the

variation in GDP after their sign-identified financial shock. Brunnermeier et al. (2021) explain about 15%

of the variation in industrial production to a financial shock. Lastly, Caldara et al. (2016) report 20-40% of

explained variation of industrial production to a financial shock. Together with the impulse response analysis,

this provides further evidence of a short-lived but statistically significant impact on belief distortions.

Reaction of Survey Forecast Errors

While I have already explored the dynamic responses of belief distortions to a financial shock, the reaction of

survey forecast errors allows me to inspect the belief formation mechanism in more detail. The interpretation

of the two exercises is different. Belief distortions show ex-ante expectational errors and their impulse

responses show whether agents evaluate the future optimistically or pessimistically. Survey forecast errors,

however, directly display the reaction to news (i.e., a structural financial shock) and indicate whether agents

under- or overreact in their expectation formation to news (Kučinskas and Peters, 2022; Angeletos, Huo and

Sastry, 2021). In contrast to the static regression approach in section 4, a dynamic analysis traces out the
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Figure 6: Forecast Error Variance Decomposition.

(a) Shock to Aaa Belief Distortions.
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(b) Shock to Baa Belief Distortions.
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Notes: Forecast error variance decomposition of the variables in the system to a financial shock. Bold lines denote median
response while gray shaded areas / dashed lines denote the 68/80/90 percent confidence intervals. The y-axis indicates the
share of explained variance at a given impulse response horizon conditional on a financial shock.
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reaction to news over time and offers a clearer picture. Specifically, agents underreact to the financial shock

when forming expectations about credit spreads if agents perceive the impact of the shock to be smaller than

it actually is. I use the same shock and identification as in the baseline model and append survey forecast

errors instead of belief distortions to the specification.

The results of this exercise are presented in Figure 7. While the responses of the EBP, real aggregates,

prices, stock market index, and short-term interest rates are basically the same as before (see Figure 4).

Across the two models, the aforementioned and discussed differences in the response of prices and the federal

funds rate arise.13 Interestingly, the responses of Aaa/Baa survey forecast errors resemble the responses of

the respective belief distortions. Across the two models, the pattern for both credit spread survey forecast

errors is the same but the interpretation changes. The impulse responses of survey forecast errors indicate that

initially agents underreact to the structural financial shock before the coefficients turn negative corresponding

to overreaction. This pattern is called dynamic overshooting and has been found for other macroeconomic

time series (Angeletos, Huo and Sastry, 2021).

Since the responses of belief distortions and survey forecast errors are quite similar, let me elaborate on

the insights of this exercise.14 The unconditional correlation of survey forecast errors and belief distortions

is already substantial with 𝜌𝑢𝑐
𝐴𝑎𝑎

= 0.56 (s.e. 0.07) and 𝜌𝑢𝑐
𝐵𝑎𝑎

= 0.59 (s.e. 0.09) and conditional on the shock

the correlation is extremely high with 𝜌𝑐
𝐴𝑎𝑎

= 0.98 (s.e. 0.04) and 𝜌𝑐
𝐵𝑎𝑎

= 0.83 (s.e. 0.12). Additionally,

by examining the responses of ML forecast errors15 conditional on the financial shock (see Figure I4), one

can see that even the machine is underpredicting the surge in credit spreads. This points to the fact that

credit spreads rise disproportionately to a financial shock. However, the interpretation is different. The

evidence in belief distortions points to the fact that agents evaluate the future too optimistically before turning

pessimistic. This aligns well with the evidence on reaction to news: initially agents underreact to the financial

shock (news) but then overreact in their expectation formation behavior. Generally, this is reassuring that

the ML expectations truly recover FIRE forecasts. Furthermore, this is in accordance with the evidence in

Krishnamurthy and Muir (2017) that credit spreads are generally too low in the buildup of a financial crisis.

I argue that agents neither realize the extent nor the extremeness of the financial shock, and thus underreact

13 Again, I have done the according robustness check and re-estimated the model featuring Aaa survey forecast errors with the shorter
sample. Then, responses are qualitative and quantitative similar across both models, see also Figure I2.

14 Recall the definitions of belief distortions and survey forecast errors. Belief distortions are defined as 𝑍𝑡 = E𝑡 𝑦𝑡+ℎ − F𝑡 𝑦𝑡+ℎ and
measure ex-ante expectational errors. Survey forecast errors are defined as 𝐹𝐸survey

𝑡 = 𝑦𝑡+ℎ − F𝑡 𝑦𝑡+ℎ and their impulse response
functions measure reactions to news.

15 ML forecast errors are defined as 𝐹𝐸ML
𝑡 = 𝑦𝑡+ℎ − E𝑡 𝑦𝑡+ℎ and their impulse response functions measure whether the machine

efficient benchmark is distorted in their predictions conditional on the financial shock.
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Figure 7: Impulse Response Functions to a Financial Shock (Survey Forecast Errors).

(a) Model with Aaa Belief Distortions.
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(b) Model with Baa Belief Distortions.
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Notes: Impulse response functions of the VAR with survey forecast errors. Black line denotes median response while gray
shaded areas denote the 68/80/90 percent confidence intervals. The responses of real GDP, real consumption, real investment,
GDP deflator, and the stock market index are scaled in percent, while the excess bond premium, the federal funds rate, and
survey forecast errors are scaled in percentage points.
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to the news and stay optimistic. In the GFC, this can be associated with the period in late 2007 / beginning

of 2008 in which financial turmoil delineated. Only after the bankruptcy of Lehman Brothers in September

2008, credit spreads skyrocketed. This event is easily identified in hindsight but led to massive havoc on the

markets. However, financial shocks have already hit the economy since late 2007 and the evidence shows the

slow realization of crash risk until the point where agents start to overreact and turn pessimistic.

Sensitivity Analysis

I perform a comprehensive set of sensitivity checks. In particular, I discuss sensitivity with regards to the

use of an alternative specification, higher-order belief distortions, and model missspecification issues. All

corresponding figures can be found in Appendix I.

Alternative Specification. For the construction of belief distortions, this paper also explores an alternative

specification, directly controlling for the median survey forecast of the respective credit spread. This has

been discussed in section 4 and the results presented in Table 2. The sample span for the out-of-sample

evaluation sample of the ML expectations significantly shorten, starting in 1995Q2 for the Aaa credit spread

and 2010Q1 for the Baa credit spread, respectively. Since the Baa credit spread then does not cover the

GFC any more and the evaluation sample is only 41 periods, I abstain from re-doing the dynamic analysis.

However, I re-do the analysis for the Aaa belief distortions with this alternative specification. The results are

presented in Figure I3. The qualitative and quantitative pattern in terms of IRFs and the FEVD is the same.

Results are similar to the another robustness check with the the short sample (see Figure I1), which starts in

1999Q1. Belief distortions intitially are positive, translating into elevated sentiment before turning quickly

pessimistic.

Higher-Order Belief Distortions. In the baseline VAR I use one-step ahead belief distortions. However, the

dataset allows me to also examine higher-order belief distortions. Therefore, I also construct belief distortions

for the two-, three-, and four-step ahead horizon. Additionally, I also use the mean over all four horizons as an

additional check to take model uncertainty into account. Then, I re-estimate the baseline VAR and the VAR

with survey forecast errors by exchanging the one-step ahead belief distortion series with higher-order belief

distortions and mean belief distortions. Results of these exercises are available in Figure I5 and Figure I6

and show no stark differences to the baseline model.

Model Missspecification. In the baseline specification, we assume a specific structure of the VAR. Arguably,

the most influential choices are prior distributions in a Bayesian setting and the stochastic volatility specific-
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ation to control for heteroskedasticity. Although the Minnesota prior setup is well established, I re-estimate

the model with a variant of the global-local shrinkage priors. Specifically, I use the horseshoe shrinkage

prior already used earlier for the estimation of the machine efficient benchmark. The advantage of this prior

is that the user does not have not to specify any hyperparameters but as any shrinkage prior, it trades off

variance against bias. Results are presented in Figure I7 for the baseline model. The qualtitative pattern of

the belief distortion series persist as in the baseline scenario although shrinkage is now entirely data-driven.

The specification without stochastic volatility is presented in Figure I8 and again, results do not change much.

6. Concluding Remarks

In this paper, I investigate ex-ante expectational errors in belief about financial crash risk. For that purpose,

I measure belief distortions in risk premia transmitted in credit spreads as the difference between a machine

efficient benchmark resembling FIRE and survey expectations. These belief distortions arise due to undue or

wrong expectations and are driven by underlying fundamental shocks. Since agents only observe a noisy and

distorted signal about risk premia, these belief distortions are possibly driven by both under- and overreaction

to news and characterize how optimistic or pessimistic agents evaluate the future.

Evidence suggests that economic agents overreact individually in their expectations about risk premia to

incoming news but underreact in the aggregate due to noisy information. A stylized model of public and

private signals with diagnostic expectations explains these findings. For the construction of the machine

efficient benchmark, or ML expectations, a comprehensive set of models is estimated with linear and non-

linear machine learning technique and an information set representing the potential information set of a

professional forecaster in the survey. In each period, the best-performing model in terms of RMSEs is

chosen in a pseudo out-of-sample forecasting exercise. This model is then used to construct a true out-of-

sample forecast. Results indicate that the ML expectations outperform survey forecasts in terms of predictive

accuracy. The predictive gains are sizable and in the range of a 15−20% improvement. The constructed belief

distortion series aligns well with key historical episodes and fluctuates around zero, showing no substantial

bias in the survey forecasts.

In a next step, I evaluate the dynamic responses of belief distortions to a financial shock. The financial

shock is identified with unanticipated innovations to the EBP identified with timinig assumptions. Real

economic aggregates and prices do not react contemporaneously to innovations in the excess bond premium,

35



while financial variables and belief distortions are allowed to react on impact. A positive one standard

deviation financial shock elicits a jump in the EBP and causes an aggregate downturn. Belief distortions

indicate that survey participants stay optimistic for a couple of periods before turning pessimistic in their

evaluation of the future. In a counterfactual exercise the response of belief distortions to the financial shock

is set to zero, essentially eliminating a channel via sentiments. While the responses of the real variables

do not change much, the hike in the credit spread is attenuated. Re-doing the analysis with survey forecast

errors instead of belief distortions, allows me to inspect the expectation formation mechanism further. The

exercise reveals the pattern of dynamic overshooting, which means that agents initially underreact to news

before overreacting to the financial shock. These findings are robust to a number of specification choices.

Taken at face value, the evidence allows the interpretation that agents underestimate financial shocks in the

beginning until financial turmoil is inevitable. The evidence presented here offers a forward-looking or

ex-ante perspective on financial risks.
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Appendix to ‘Belief Distortions and Risk Premia’

Maximilian Boeck∗

Appendix Material

This appendix contains additional material not reported in the main text. First, it discusses the
various data sources used in the paper for the survey data, macroeconomic data series, real-time
macroeconomic data, and monthly financial data. Second, it contains the propositions and proofs.
Third, it explains the involved estimation algorithms, i.e., dynamic factor estimation, Bayesian
linear regression with the horseshoe (HS) shrinkage priors, Elastic Net (EN), and Bayesian
Additive Regression Trees (BART). Furthermore, the exact specifications of the construction
of the machine learning (ML) expectations and the macroeconomic model are laid out and
discussed in detail. Fourth, the prior specification of the Bayesian vector autoregressive model
with the Minnesota prior and stochastic volatility is discussed in detail. Fifth, it explains the
exact construction of the structural scenario analysis. Sixth, diagnostics of the belief distortion
series are discussed. Seventh, convergence diagnostics for all estimated models are presented.
Eigth, additional results from the forecasting exercise are presented. Ninth and last, additional
results from the VAR analysis are shown.

∗ Contact: Maximilian Boeck, Department of Economics, Università Bocconi. Via Roentgen 1, 20136 Milano, Lombardia, Italy.
E-mail: maximilian.boeck@unibocconi.it.
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A. Data

This results of this paper are obtained with data from various data sources. This section provides all necessary
details on the data sources, transformations, and final construction. The paper utilizes four different categories
of data: survey data, macroeconomic data, real-time macroeconomic data, and monthly financial data. In the
following, I describe the data.

A1. Survey Data

In the paper, I use the Blue Chip expectation data from Blue Chip Financial Forecasts Wolters Kluwer
(1984-2020).2 The surveys are conducted each month by sending out surveys to forecasters in around 40 to
50 financial firms such as Bank of America, Goldman Sachs & Co., Swiss Re, Loomis, or J.P. Morgan Chase.
The participants are surveyed around the 25th of each month and the results published a few days later on
the 1st of the following month. The forecasters are asked to forecast the average of the level of U.S. interest
rates over a particular calender quarter, i.e., the federal funds rate, prime bank rate, LIBOR rate, Treasury bill
yields of the following maturities: 3-month, 6-month, 1-year, 2-year, 5-year, 10-year, 20-year, Aaa corporate
bond yield, Baa corporate bond yield, and some mortgages rates. Forecasts are available for the current
quarter 𝑡 and for quarters 𝑡 + 1 through 𝑡 + 4. Panelists are not necessarily continuously in the survey and
thus the composition of forecasters change throughout the sample. In total, I observe about 150 individual
forecasters with varying sample lengths. From these cross-sections, I can construct quantities summarizing
the distribution (i.e., mean, median, standard deviation, or skeweness). In this study, I utilize the forecasts
of Aaa and Baa corporate bond yields and 10-year Treasury bill yields. In some instance, I use the 20-year
Treasury bill rate if data is missing.

(i) Aaa credit spread: Let F(𝑖)𝑡
[
𝑏𝑦𝑎𝑎𝑎
𝑡+ℎ

]
be forecster 𝑖’s prediction of the level of Aaa credit spread 𝑏𝑦𝑎𝑎𝑎

𝑡+ℎ
at horizon ℎ ≥ 0. Let F(𝑖)𝑡

[
𝑦10
𝑡+ℎ

]
be forecaster 𝑖’s prediction of the level of the 10-year Treasury bill

yield at horizon ℎ ≥ 0. Hence,

F
(𝑖)
𝑡

[
𝑐𝑠𝑎𝑎𝑎𝑡+ℎ

]
= F

(
𝑡 𝑖)

[
𝑏𝑦𝑎𝑎𝑎𝑡+ℎ

]
− F(𝑖)𝑡

[
𝑦10
𝑡+ℎ

]
, (A.1)

constructs the survey expectation of the Aaa credit spread at time 𝑡 for horizon ℎ for individual 𝑖. The
survey directly provides the consensus forecasts, which is the median of the observations. Hence,

F𝑡
[
𝑐𝑠𝑎𝑎𝑎𝑡+ℎ

]
= median𝑖=1,...,𝑁𝑡

[
F
(𝑖)
𝑡

[
𝑐𝑠𝑎𝑎𝑎𝑡+ℎ

] ]
. (A.2)

Data on the Aaa credit spread covers the period 1988Q1 to 2020Q1.

(ii) Baa credit spread: Let F(𝑖)𝑡
[
𝑏𝑦𝑏𝑎𝑎
𝑡+ℎ

]
be forecster 𝑖’s prediction of the level of Baa credit spread 𝑏𝑦𝑏𝑎𝑎

𝑡+ℎ
at horizon ℎ ≥ 0. Let F(𝑖)𝑡

[
𝑦10
𝑡+ℎ

]
be forecaster 𝑖’s prediction of the level of the 10-year Treasury bill

yield at horizon ℎ ≥ 0. Hence,

F
(𝑖)
𝑡

[
𝑐𝑠𝑏𝑎𝑎𝑡+ℎ

]
= F

(
𝑡 𝑖)

[
𝑏𝑦𝑏𝑎𝑎𝑡+ℎ

]
− F(𝑖)𝑡

[
𝑦10
𝑡+ℎ

]
, (A.3)

constructs the survey expectation of the Aaa credit spread at time 𝑡 for horizon ℎ for individual 𝑖. The
survey directly provides the consensus forecasts, which is the median of the observations. Hence,

F𝑡
[
𝑐𝑠𝑏𝑎𝑎𝑡+ℎ

]
= median𝑖=1,...,𝑁𝑡

[
F
(𝑖)
𝑡

[
𝑐𝑠𝑏𝑎𝑎𝑡+ℎ

] ]
. (A.4)

Data on the Baa credit spread covers the period 1999Q1 to 2020Q1.

The surveys are conducted right before the publication of the newsletter. Each issue is always dated the
1st of the month and the actual survey conducted over a two-day period almost always between 24th and 28th

2 The data were purchased and can be found under the following URL: https://law-store.wolterskluwer.com/s/product/
blue-chip-financial-forecast-print/01tG000000LuDUC.
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of the month. The major exception is the January issue when the survey is conducted a few days earlier to
avoid conflict with the Christmas holiday. Therefore, I assume that the end of the last month (equivalently
beginning of the current month) is when the forecast is made. For example, for the report in 2008 Sept, I
assume that the forecast is made on September 1, 2008. To convert monthly forecasts to quarterly forecasts,
I use the forecasts at the last month of each quarter as the quarterly forecasts. This is is to maximize the
amount of information a forecaster may has in each quarter.

In total, the survey consists of about 150 distinguishable individuals with varying sample lengths due to
changes in the composition of the forecaster in the survey. The data were manually checked for errors before
using the data in the analysis. To detect outliers, I exclude all forecasts from the analysis which are five
interquartile ranges away from the median. In case there is no variation in the interquartile range, I apply the
interquartile range of the previous period to ensure the consistency of the forecasts. Obvious coding errors
were corrected (e.g., in some instance the level of a yield was 119 instead of 11.9). Furthermore, one may
worry that BC financial forecasts are distorted due to signaling reasons. However, forecasts for variables
also entertained in the anonymous Philadelphia Fed Survey of Private Forecasters tend to be similar. The
forecasts used in this study are only available in the Blue Chip professional forecasts.

A2. Macroeconomic Data

For the estimation of the macroeconomic model, we rely on macroeconomic data from the FRED database
(Data, 2022) provided by the St. Louis’ Federal Reserve. Data were downloaded using the R-package fredr
(Boysel and Vaughan, 2019). All time series cover the time period 1970Q1 to 2021Q1. All series are
seasonally adjusted, either by downloading the already adjusted series from FRED or by applying a quarterly
X11 filter based on an AR(4) model to the unadjusted series. Some series in the database are observed only
on a monthly basis and quarterly values are computed by obtaining quarterly averages. In Table A1 I provide
a comprehensive overview of all involved variables and its exact definition and transformation before the
estimations. The column Tcode shows the transformation I apply to a series: 1 – no transformation (levels);
2 – first difference; 4 – logarithms; 5 – first difference of logarithms; 6 – second difference in logarithms.

Table A1: Macroeconomic Data.

# Mnemonic Description Tcode

Macroeconomic Data from FRED.

1 GDPC1 Real Gross Domestic Product, 3 Decimal 1
2 PCESV Personal Consumption Expenditure: Services 1
3 PCEDG Personal Consumption Expenditure: Durable Goods 1
4 PCEND Personal Consumption Expenditure: Nondurable Goods 1
5 GPDI Gross Private Domestic Investment 1
6 INDPRO Industrial Production Index 1
7 HOANBS Nonfarm Business Sector: Hours of All Persons 1
8 UNRATE Unemployment Rate 1
9 CIVPART Labor Force Participation Rate 1
10 COMPRNFB Nonfarm Business Sector: Real Compensation Per Hour 1
11 BUSLOANS Commercial and Industrial Loans at All Commercial Banks 1
12 CONSUMER Consumer (Individual) Loans at All Commercial Banks 1
13 LOANINV Total Loans and Investments at All Commercial Banks 1
14 NASDAQCOM NASDAQ Composite Index 1

Continued on next page
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Table A1 – Continued from previous page
# Mnemonic Description Tcode

15 FEDFUNDS Effective Federal Funds Rate 1
16 GS1 1-year Treasury Constant Maturity Rate 1
17 GS10 10-year Treasury Constant Maturity Rate 1
18 AAA Moody’s Seasoned Aaa Corporate Bond Yield 1
19 BAA Moody’s Seasoned Baa Corporate Bond Yield 1
20 GDPDEF Gross Domestic Product: Implicit Price Deflator 1
21 PPIACO PPI: All Commodities 1
22 UMCSENT University of Michigan: Index of Consumer Sentiment 1
23 BCE1Y University of Michigan: Business Conditions Expected

During the Next Year
1

24 BCE5Y University of Michigan: Business Conditions Expected
During the Next 5 Years

1

25 UE1Y University of Michigan: Expected Change in Unemploy-
ment During the Next Year

1

26 SP500 S&P 500 1
27 CNP16OV Population Level 1

Transformations.

1 Aaa spread AAA − GS10
2 Baa spread BAA − GS10
3 real GDP 100 × ln (GDPC1)
4 Real Consumption 100 × ln

(
PCEND+PCESV
GDPDEF

)
5 Real Investments 100 × ln

(
GPDI+PCEDG
GDPDEF

)
6 GDP Deflator 100 × ln(GDPDEF)
7 Excess Bond Premium EBP
8 S&P 500 100 × ln(SP500)
9 Federal Funds Rate FEDFUNDS
10 Short-term Interest Rate GS1
11 Bank Credit 100 × ln(LOANINV)
12 Business Loans 100 × ln(BUSLOANS)
13 Consumer Loans 100 × ln(CONSUMER)
14 Term Premium GS10 − GS1
15 Hours 100 × ln

(
HOANBS

2080
)

16 Unemployment ln(UNRATE)
17 Labor Force Participation 100 × ln(CIVPART)
18 Consumer Prices 100 × ln(CPIAUCSL)
19 Producer Prices 100 × ln(PPIACO)
20 real Wage 100 × ln(COMPRNFB)
21 Consumer Sentiment 100 × ln(UMCSENT)
22 Business Expectations 1Y 100 × ln(BCE1Y)
23 Business Expectations 5Y 100 × ln(BCE5Y)
24 Unemployment Expectations 100 × ln(UE1Y)
25 NASDAQ 100 × ln(NASDAQCOM)
26 Industrial Production 100 × ln(INDPRO)
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A3. Real-Time Macroeconomic Data

For the construction of objective expectations, I only rely on data in real-time. This means I combine all
data observed available at the time of a forecast data without including later revisions. This is done via the
real-time dataset for macroeconomicsts by the Philadelphia Fed (Federal Reserve Philadelphia, 2022). In this
dataset, I know the specific day that the data in each vintage are released. The series-specific documentation
on the Philadelphia Fed’s website provides details on the timing of the vintages for each series. For some
series, exact release dates are known, and thus the vintages reflect data available at the time of the data release.
For other variables, I only know that vintages contain data available in the middle of a month or quarter, but
not the exact day. For another subset of variables with unknown release dates, I make the assumption that a
forecaster at time 𝑡 observes at most the time 𝑡 − 1 vintage of data. In addition to the macro variables with
different vintages that we obtain from the Philadelphia Fed, we include a set of financial variables from the
FRED database to the dataset (Data, 2022). This are available in real-time and are not revised in the future.

After combining all of the series that are known by the forecaster at each date, we convert monthly to
quarterly by using the middle-of-quarter values. Again, this depends on the choice that we choose the survey
forecasts at the end-of-quarter. Table A2 provides a complete list of real-time macro variables. Furthermore,
the table includes the first available vintages for each variable that has multiple vintages. For most of the
variables the last vintages corresponds with the end of the sample.3 All series are seasonally adjusted, either
by downloading the already adjusted series from FRED or by applying a quarterly X11 filter based on an
AR(4) model to the unadjusted series. Some series in the database are observed only on a monthly basis and
quarterly values are computed by obtaining quarterly averages. Concerning the data series used for computing
factors, all variables are transformed to be approximately stationary. In particular, the column Tcode shows
the transformation I apply to a series: 1 – no transformation (levels); 2 – first difference; 4 – logarithms; 5 –
first difference of logarithms; 6 – second difference in logarithms.

Table A2: Real-Time Macroeconomic Data.

# Mnemonic Description Tcode

Output and Income

1 ROUTPUT Real Gross Domestic Product 5 1965Q4
2 NOUTPUT Nominal Gross Domestic Product 5 1965Q4
3 IPT Industrial Production Index: Total 5 1962M11
4 IPM Industrial Production Index: Manufacturing 5 1962M11
5 CUT Capacity Utilization Rate: Total 1 1983M7
6 CUM Capacity Utilization Rate: Manufacturing 1 1979M8
7 WSD Wages and Salary Disbursements 5 1965Q4
8 OLI Other Labor Income 5 1965Q4
9 PROPI Proprietor’s Income 5 1965Q4
10 RENTI Rental Income of Persons 2 1965Q4
11 DIV Dividends 5 1965Q4
12 PINTI Personal Interest Income 5 1965Q4
13 TRANR Transfer Payments 5 1965Q4
14 SSCONTRIB Personal Contribution for Social Insurance 5 1965Q4

Continued on next page
3 EXEMPTIONS
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Table A2 – Continued from previous page
# Mnemonic Description Tcode First Vintage

15 NPI Nominal Personal Income 5 1965Q4
16 PTAX Personal Tax & Nontax Payments 5 1965Q4
17 NDPI Nominal Disposable Personal Income 5 1965Q4
18 PINTPAID Interest Paid by Consumers 5 1965Q4
19 TRANPF Personal Transfer Payments to Foreigners 5 1965Q4
20 NPSAV Nominal Personal Saving 2 1965Q4
21 RATESAV Personal Saving Rate, Constructed 2 1965Q4

Consumption and Investment

22 RCON Real Personal Consumption Expenditure: Total 5 1965Q4
23 RCONND Real Personal Consumption Expenditure: Nondurable

Goods
5 1965Q4

24 RCOND Real Personal Consumption Expenditure: Durable Goods 5 1965Q4
25 RCONS Real Personal Consumption Expenditure: Services 5 1965Q4
26 NCON Nominal Personal Consumption Expenditure 5 1965Q4
27 RINVRESID Real Gross Private Domestic Investment: Residential 5 1965Q4
28 RINVCHI Real Gross Private Domestic Investment: Change in Private

Inventories
2 1965Q4

Trade and Government

29 RNX Real Net Export of Goods and Services 2 1965Q4
30 REX Real Exports of Goods and Services 5 1965Q4
31 RIMP Real Import of Goods and Services 5 1965Q4
32 RG Real Government Consumption & Gross Investment: Total 5 1965Q4
33 RGF Real Government Consumption & Gross Investment: Fed-

eral
5 1965Q4

34 RGSL Real Government Consumption & Gross Investment: State
and Local

5 1965Q4

Money and Prices

35 M1 M1 Money Stock 6 1965Q4
36 M2 M2 Money Stock 6 1971Q2
37 P Price Index for GNP/GDP 6 1965Q4
38 PCON Price Index for Personal Consumption Expenditure, Con-

structed
6 1965Q4

39 PIMP Price Index for Imports of Goods and Services 6 1965Q4

Labor Market and Housing

40 RUC Unemployment Rate 2 1965Q4
41 EMPLOY Nonfarm Payroll Employment 5 1964M12
42 H Index of Aggregate Weekly Hours: Total 1 1971M9
43 HG Index of Aggregate Weekly Hours: Goods Sector 1 1971M9
44 HS Index of Aggregate Weekly Hours: Service Sector 1 1971M9
45 HSTARTS Housing Starts 5 1968M2

Continued on next page
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# Mnemonic Description Tcode First Vintage

Interest Rates and Spreads

46 MPRIME Bank Prime Loan Rate 1 -
47 FEDFUNDS Effective Federal Funds Rate 1 -
48 TB3MS 3-Months Treasury Bill: Secondary Market Rate 1 -
49 TB6MS 6-Months Treasury Bill: Secondary Market Rate 1 -
50 GS1 1-Year Treasury Constant Maturity Rate 1 -
51 GS2 2-Year Treasury Constant Maturity Rate 1 -
52 GS3 3-Year Treasury Constant Maturity Rate 1 -
53 GS5 5-Year Treasury Constant Maturity Rate 1 -
54 GS10 10-Year Treasury Constant Maturity Rate 1 -
55 GS30 30-Year Treasury Constant Maturity Rate 1 -
56 AAA Moody’s Seasoned Aaa Corporate Bond Yield 1 -
57 BAA Moody’s Seasoned Baa Corporate Bond Yield 1 -
58 NASDAQCOM NASDAQ Composite Index 5 -
59 EXSZUS Switzerland / U.S. Foreign Exchange Rate 5 -
60 EXJPUS Japan / U.S. Foreign Exchange Rate 5 -
61 EXUSUK U.S. / U.K. Foreign Exchange Rate 5 -
62 EXCAUS Canada / U.S. Foreign Exchange Rate 5 -
63 sTB3MS TB3MS - FEDFUNDS 1 -
64 sTB6MS TB6MS - FEDFUNDS 1 -
65 sGS1 GS1 - FEDFUNDS 1 -
66 sGS3 GS3 - FEDFUNDS 1 -
67 sGS5 GS5 - FEDFUNDS 1 -
68 sGS10 GS10 - FEDFUNDS 1 -
69 sMPRIME MPRIME - FEDFUNDS 1 -
70 sAAA AAA - FEDFUNDS 1 -
71 sBAA BAA - FEDFUNDS 1 -
72 AAA10Y AAA - GS10 1 -
73 BAA10Y BAA - GS10 1 -
74 AAA30Y AAA - GS30 1 -
75 BAA30Y BAA - GS30 1 -
76 VXOCLS CBOE S&P100 Volatility Index 1 -

A4. Monthly Financial Data

The 147 monthly financial series in this dataset are versions of the financial dataset used in Jurado, Ludvigson
and Ng (2015), Ludvigson, Ma and Ng (2021), and Bianchi, Ludvigson and Ma (2022). It consists of a
number of indicators measuring the behavior of a broad cross-section of asset returns, as well as some
aggregate financial indicators not included in the macro dataset. These data include valuation ratios such as
the dividend-price ratio or the price-earnings ratio, dividends and prices, and a group of variables we call “risk
factors,” since they have been used in cross-sectional or time-series studies to uncover variation in the market
risk-premium. These risk-facors include the three Fama and French (1993) risk factors, namely the excess
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return on the market 𝑀𝐾𝑇𝑡 , the “small-minus-big” (𝑆𝑀𝐵𝑡 ) and “high-minus-low” (𝐻𝑀𝐿𝑡 ) portfolio returns,
the momentum factor 𝑈𝑀𝐷𝑡 , and the small stock value spread 𝑅15 − 𝑅11. Furthermore and following
Fama and French (1992), returns on 100 portfolios are sorted into 10 size and 10 book-market categories and
included to the dataset. The data source for prices, dividends, and the dividend-price ratio is the Center for
Research in Security Prices (Center for Research in Security Prices, 2022). The price-earnings ratio is from
Robert Shiller’s website (Shiller, 2022). The portfolios and risk factors are available on Kenneth French’s
Darthmouth website (French, 2022). The raw data used to form factors are always transformed to achieve
stationarity. In addition, when forming forecasting factors from the large macro and financial datasets, the raw
data (which are in different units) are standardized before performing PCA. More details follow in Appendix
C.

All returns are expressed in logs (i.e., the log of the gross return), are displayed in percent (i.e., multiplied
by 100), and are annualized by multiplying by 12, i.e., if 𝑥 is the original return, I transform 1200 ln(1+𝑥/100).
The data series used in this dataset are listed below by data source. Additional details on data transformations
are given below the table.

I convert monthly data to quarterly by using either the middle-of-quarter values. The decision to use
middle-of-quarter values depends on the survey deadline of a particular forecast date. In the analysis, I use
the survey forecasts of the last month of the quarter which are conducted at the end of the second month.
Hence, it is conceivable that the forecasters would have information about the second month of quarter 𝑡.
Therefore, I use the middle-of-quarter values.

I indicate data transformations as follows: the column Tcode shows the transformation I apply to a series:
1 – no transformation (levels); 2 – first difference; 4 – logarithms; 5 – first difference of logarithms; 6 –
second difference in logarithms.

Table A3: List of Monthly Financial Dataset Variables.

# Mnemonic Description Tcode

Prices and Dividends

1 D_log(DIV) Δlog𝐷∗
𝑡 see additional details below 5

2 D_log(P) Δlog𝑃𝑡 see additional details below 5
3 D_log(DIVre) Δlog𝐷𝑟𝑒,∗𝑡 see additional details below 5
4 D_log(Pre) Δlog𝑃𝑟𝑒𝑡 see additional details below 5
5 d-p 𝑙𝑜𝑔(𝐷∗

𝑡 − 𝑙𝑜𝑔(𝑃𝑡 ) see additional details below 4
6 p-e Price/earnings ratio 1

Equity Risk Factors

7 R15-R11 (Small,High) minus (Small,Low) sorted on (size,book-to-
market)

1

8 Mkt-RF Market excess returns 1
9 SMB Small Minus Big, sorted on size 1
10 HML High Minus Low, sorted on book-to-market 1
11 UMD Up Minus Down, sorted on momentum 1

Industries

12 Agric Agric industry portfolio 1
13 Food Food industry portfolio 1
14 Beer Beer industry portfolio 1

Continued on next page
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Table A3 – Continued from previous page
# Mnemonic Description Tcode

15 Smoke Smoke industry portfolio 1
16 Toys Toys industry portfolio 1
17 Fun Fun industry portfolio 1
18 Books Books industry portfolio 1
19 Hshld Hshld industry portfolio 1
20 Clths Clths industry portfolio 1
21 MedEq MedEq industry portfolio 1
22 Drugs Drugs industry portfolio 1
23 Chems Chems industry portfolio 1
24 Rubbr Rubbr industry portfolio 1
25 Txtls Txtls industry portfolio 1
26 BldMt BldMt industry portfolio 1
27 Cnstr Cnstr industry portfolio 1
28 Steel Steel industry portfolio 1
29 Mach Mach industry portfolio 1
30 ElcEq ElcEq industry portfolio 1
31 Autos Autos industry portfolio 1
32 Aero Aero industry portfolio 1
33 Ships Ships industry portfolio 1
34 Mines Mines industry portfolio 1
35 Coal Coal industry portfolio 1
36 Oil Oil industry portfolio 1
37 Util Util industry portfolio 1
38 Telcm Telcm industry portfolio 1
39 PerSv PerSv industry portfolio 1
40 BusSv BusSv industry portfolio 1
41 Hardw Hardw industry portfolio 1
42 Chips Chips industry portfolio 1
43 LabEq LabEq industry portfolio 1
44 Paper Paper industry portfolio 1
45 Boxes Boxes industry portfolio 1
46 Trans Trans industry portfolio 1
47 Whlsl Whlsl industry portfolio 1
48 Rtail Rtail industry portfolio 1
49 Meals Meals industry portfolio 1
50 Banks Banks industry portfolio 1
51 Insur Insur industry portfolio 1
52 RlEst RlEst industry portfolio 1
53 Fin Fin industry portfolio 1
54 Oth Oth industry portfolio 1

Size/BM

55 1_2 (1,2) portfolio sorted on (size, book-to-market) 1
56 1_4 (1,4) portfolio sorted on (size, book-to-market) 1

Continued on next page
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# Mnemonic Description Tcode

57 1_5 (1,5) portfolio sorted on (size, book-to-market) 1
58 1_6 (1,6) portfolio sorted on (size, book-to-market) 1
59 1_7 (1,7) portfolio sorted on (size, book-to-market) 1
60 1_8 (1,8) portfolio sorted on (size, book-to-market) 1
61 1_9 (1,9) portfolio sorted on (size, book-to-market) 1
62 1_high (1,high) portfolio sorted on (size, book-to-market) 1
63 2_low (2,low) portfolio sorted on (size, book-to-market) 1
64 2_2 (2,2) portfolio sorted on (size, book-to-market) 1
65 2_3 (2,3) portfolio sorted on (size, book-to-market) 1
66 2_4 (2,4) portfolio sorted on (size, book-to-market) 1
67 2_5 (2,5) portfolio sorted on (size, book-to-market) 1
68 2_6 (2,6) portfolio sorted on (size, book-to-market) 1
69 2_7 (2,7) portfolio sorted on (size, book-to-market) 1
70 2_8 (2,8) portfolio sorted on (size, book-to-market) 1
71 2_9 (2,9) portfolio sorted on (size, book-to-market) 1
72 2_high (2,high) portfolio sorted on (size, book-to-market) 1
73 3_low (3,low) portfolio sorted on (size, book-to-market) 1
74 3_2 (3,2) portfolio sorted on (size, book-to-market) 1
75 3_3 (3,3) portfolio sorted on (size, book-to-market) 1
76 3_4 (3,4) portfolio sorted on (size, book-to-market) 1
77 3_5 (3,5) portfolio sorted on (size, book-to-market) 1
78 3_6 (3,6) portfolio sorted on (size, book-to-market) 1
79 3_7 (3,7) portfolio sorted on (size, book-to-market) 1
80 3_8 (3,8) portfolio sorted on (size, book-to-market) 1
81 3_9 (3,9) portfolio sorted on (size, book-to-market) 1
82 3_high (3,high) portfolio sorted on (size, book-to-market) 1
83 4_low (4,low) portfolio sorted on (size, book-to-market) 1
84 4_2 (4,2) portfolio sorted on (size, book-to-market) 1
85 4_3 (4,3) portfolio sorted on (size, book-to-market) 1
86 4_4 (4,4) portfolio sorted on (size, book-to-market) 1
87 4_5 (4,5) portfolio sorted on (size, book-to-market) 1
88 4_6 (4,6) portfolio sorted on (size, book-to-market) 1
89 4_7 (4,7) portfolio sorted on (size, book-to-market) 1
90 4_8 (4,8) portfolio sorted on (size, book-to-market) 1
91 4_9 (4,9) portfolio sorted on (size, book-to-market) 1
92 4_high (4,high) portfolio sorted on (size, book-to-market) 1
93 1_low (5,low) portfolio sorted on (size, book-to-market) 1
94 5_2 (5,2) portfolio sorted on (size, book-to-market) 1
95 5_3 (5,3) portfolio sorted on (size, book-to-market) 1
96 5_4 (5,4) portfolio sorted on (size, book-to-market) 1
97 5_5 (5,5) portfolio sorted on (size, book-to-market) 1
98 5_6 (5,6) portfolio sorted on (size, book-to-market) 1
99 5_7 (5,7) portfolio sorted on (size, book-to-market) 1
100 5_8 (5,8) portfolio sorted on (size, book-to-market) 1

Continued on next page

51



Table A3 – Continued from previous page
# Mnemonic Description Tcode

101 5_9 (5,9) portfolio sorted on (size, book-to-market) 1
102 5_high (5,high) portfolio sorted on (size, book-to-market) 1
103 6_low (6,low) portfolio sorted on (size, book-to-market) 1
104 6_2 (6,2) portfolio sorted on (size, book-to-market) 1
105 6_3 (6,3) portfolio sorted on (size, book-to-market) 1
106 6_4 (6,4) portfolio sorted on (size, book-to-market) 1
107 6_5 (6,5) portfolio sorted on (size, book-to-market) 1
108 6_6 (6,6) portfolio sorted on (size, book-to-market) 1
109 6_7 (6,7) portfolio sorted on (size, book-to-market) 1
110 6_8 (6,8) portfolio sorted on (size, book-to-market) 1
111 6_9 (6,9) portfolio sorted on (size, book-to-market) 1
112 6_high (6,high) portfolio sorted on (size, book-to-market) 1
113 7_low (1,low) portfolio sorted on (size, book-to-market) 1
114 7_2 (7,2) portfolio sorted on (size, book-to-market) 1
115 7_3 (7,3) portfolio sorted on (size, book-to-market) 1
116 7_4 (7,4) portfolio sorted on (size, book-to-market) 1
117 7_5 (7,5) portfolio sorted on (size, book-to-market) 1
118 7_6 (7,6) portfolio sorted on (size, book-to-market) 1
119 7_7 (7,7) portfolio sorted on (size, book-to-market) 1
120 7_8 (7,8) portfolio sorted on (size, book-to-market) 1
121 7_9 (7,9) portfolio sorted on (size, book-to-market) 1
122 8_low (8,low) portfolio sorted on (size, book-to-market) 1
123 8_2 (8,2) portfolio sorted on (size, book-to-market) 1
124 8_3 (8,3) portfolio sorted on (size, book-to-market) 1
125 8_4 (8,4) portfolio sorted on (size, book-to-market) 1
126 8_5 (8,5) portfolio sorted on (size, book-to-market) 1
127 8_6 (8,6) portfolio sorted on (size, book-to-market) 1
128 8_7 (8,7) portfolio sorted on (size, book-to-market) 1
129 8_8 (8,8) portfolio sorted on (size, book-to-market) 1
130 8_9 (8,9) portfolio sorted on (size, book-to-market) 1
131 8_high (8,high) portfolio sorted on (size, book-to-market) 1
132 9_low (9,low) portfolio sorted on (size, book-to-market) 1
133 9_2 (9,2) portfolio sorted on (size, book-to-market) 1
134 9_3 (9,3) portfolio sorted on (size, book-to-market) 1
135 9_4 (9,4) portfolio sorted on (size, book-to-market) 1
136 9_5 (9,5) portfolio sorted on (size, book-to-market) 1
137 9_6 (9,6) portfolio sorted on (size, book-to-market) 1
138 9_7 (9,7) portfolio sorted on (size, book-to-market) 1
139 9_8 (9,8) portfolio sorted on (size, book-to-market) 1
140 9_high (9,high) portfolio sorted on (size, book-to-market) 1
141 10_low (10,low) portfolio sorted on (size, book-to-market) 1
142 10_2 (10,2) portfolio sorted on (size, book-to-market) 1
143 10_3 (10,3) portfolio sorted on (size, book-to-market) 1
144 10_4 (10,4) portfolio sorted on (size, book-to-market) 1

Continued on next page
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145 10_5 (10,5) portfolio sorted on (size, book-to-market) 1
146 10_6 (10,6) portfolio sorted on (size, book-to-market) 1
147 10_7 (10,7) portfolio sorted on (size, book-to-market) 1

CRSP Data Details. Value-weighted price and dividend data are obtained from CRSP. From the Annual
Update data, I obtain monthly value-weighted returns series vwretd (with dividends) and vwretx (excluding
dividends).4 These series have the interpretation

𝑉𝑊𝑅𝐸𝑇𝐷𝑡 =
𝑃𝑡+1 + 𝐷𝑡+1

𝑃𝑡
(A.5)

𝑉𝑊𝑅𝐸𝑇𝑋𝑡 =
𝑃𝑡+1

𝑃𝑡
(A.6)

From these series, a normalized price series 𝑃𝑡 can be constructed using the recusion

𝑃0 = 1, (A.7)

𝑃𝑡 = 𝑃𝑡−1 ∗𝑉𝑊𝑅𝐸𝑇𝑋𝑡 . (A.8)

A dividend series can then be constructed using

𝐷𝑡 = 𝑃𝑡−1(𝑉𝑊𝑅𝐸𝑇𝐷𝑡 −𝑉𝑊𝑅𝐸𝑇𝑋𝑡 ). (A.9)

In order to remove seasonality of dividend payments from the data, instead of 𝐷𝑡 we use the series

𝐷∗
𝑡 =

1
12

11∑︁
𝑗=0

𝐷𝑡− 𝑗 , (A.10)

i.e., the moving average over the entire year. For the price and dividend series under “reinvestment,” we
calculate the price under reinvestment, 𝑃𝑟𝑒𝑡 , as the normalized value of the market portfolio under reinvestment
of dividends, using the recursion

𝑃𝑟𝑒0 = 1, (A.11)

𝑃𝑟𝑒𝑡 = 𝑃𝑟𝑒𝑡−1 ∗𝑉𝑊𝑅𝐸𝑇𝑋𝑡 . (A.12)

Similarly, we can define dividends under reinvestment, 𝐷𝑟𝑒𝑡 , as the total dividend payments on this portfolio
(the number of “shares” of which have increased over time) using

𝐷𝑟𝑒𝑡 = 𝑃𝑟𝑒𝑡−1(𝑉𝑊𝑅𝐸𝑇𝐷𝑡 −𝑉𝑊𝑅𝐸𝑇𝑋𝑡 ). (A.13)

As before, we can remove seasonality by using

𝐷
𝑟𝑒,∗
𝑡 =

1
12

11∑︁
𝑗=0

𝐷𝑟𝑒𝑡− 𝑗 . (A.14)

Five data series are constructed from the CRSP data as follows:

4 Note that both returns are defined as gross returns, while CRSP may provide you with net returns.
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(i) D_log(DIV): Δ log 𝐷∗
𝑡 ,

(ii) D_log(P): Δ log 𝑃𝑡 ,

(iii) D_log(DIVre): Δ log 𝐷𝑟𝑒,∗𝑡 ,

(iv) D_log(Pre): Δ log 𝑃𝑟𝑒𝑡 ,

(v) d-p: log(𝐷∗
𝑡 ) − log(𝑃𝑡 ).

Kenneth French Data Details. The following data are obtained from the data library of Kenneth French’s
Dartmouth website (French, 2022):

(i) Fama/French Factors: From this dataset, I obtain the data series Mkt-RF, SMB, HML.

(ii) 25 portfolios formed on size and book-to-market (5×5): From this dataset, I obtain the series R15-R11,
which is the spread between the (small, high) book-to-market and (small,low) book-to-market portfolio.

(iii) Momentum factor: From this dataset, I obtain the series UMD, which is equal to the momentum factor.

(iv) 49 industry portfolios: From this dataset, I use all value-weighted series excluding any series that have
missing observations from January 1960 on. The omitted series are: Soda, Hlth, FabPr, Guns, Gold,
Softw.

(v) 100 portfolios formed in size and book-to-market: From this dataset, I use all value-weighted series
excluding any series that have missing observations from January 1960 on. This yields variables with
the name X_Y where X stands for the index of the size variable (1, 2, . . . , 10) and Y stands for the index
of the book-to-market variable (Low,2, 3, . . . , 9,High). The omitted series are 1_low, 1_3, 7_high, 9_9,
10_8, 10_9, and 10_high.
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B. Propositions and Proofs

This section provides the proofs discussed in the paper. Proposition 1 and 2 are essentially from Bordalo
et al. (2020) but are stated for the sake of completeness.

Proposition 1: The distorted density 𝑓 𝜃 (𝑦𝑡 | 𝑠𝑖𝑡 ) is normal. For 𝜌 > 0 and in the steady state, it is
characterized by a time-varying mean F𝜃

𝑖𝑡
𝑦𝑡 = 𝑦

𝜃
𝑖𝑡 |𝑡 and a constant variance Σ𝜎2

𝜀

Σ+𝜎2
𝜀
, where

F𝜃𝑖𝑡 𝑦𝑡 = 𝑦
𝜃
𝑖𝑡 |𝑡 = 𝑦𝑖𝑡 |𝑡 + 𝜃𝐾

(
𝑠𝑖𝑡 − 𝑦𝑖𝑡 |𝑡−1

)
, 𝐾 =

Σ

Σ + 𝜎2
𝜀

, (B.1)

Σ =
1
2
(𝜎2
𝑢 − (1 − 𝜌2)𝜎2

𝜀 +
√︃[

(1 − 𝜌2)𝜎2
𝜀 − 𝜎2

𝑢

]
+ 4𝜎2

𝜀𝜎
2
𝑢 . (B.2)

Proof of Proposition 1. The data generating process is 𝑦𝑡 = 𝜌𝑦𝑡−1 + 𝑢𝑡 , where 𝑢𝑡 ∼ N(0, 𝜎2
𝑢) i.i.d. over

time. Forecaster 𝑖 observes a noisy signal 𝑠𝑖𝑡 = 𝑦𝑡 + 𝜀𝑖𝑡 , where 𝜀𝑖𝑡 ∼ N(0, 𝜎2
𝜀) is i.i.d. over time and space.

𝑆𝑖𝑡 denotes the full history of the privately observed signals. Rational expectations are obtained iteratively
by applying Bayes rule

𝑓 (𝑦𝑡 | 𝑆𝑖𝑡 ) =
𝑓 (𝑦𝑡 | 𝑆𝑖𝑡−1) × 𝑓 (𝑠𝑖𝑡 | 𝑦𝑡 )

𝑓 (𝑠𝑖𝑡 )
.

Defining these densities as follows

𝑓 (𝑦𝑡 | 𝑆𝑖𝑡−1) = (2𝜋)−1/2(Σ𝑡 |𝑡−1)−1/2 exp
{
− 1

2Σ𝑡 |𝑡−1
(𝑦𝑡 − 𝑦𝑖𝑡 |𝑡−1)2

}
,

𝑓 (𝑠𝑖𝑡 | 𝑦𝑡 ) = (2𝜋)−1/2(𝜎2
𝜀)−1/2 exp

{
− 1

2𝜎2
𝜀

(𝑠𝑖𝑡 − 𝑦𝑡 )2
}
,

𝑓 (𝑠𝑖𝑡 ) = (2𝜋)−1/2(Σ𝑡 |𝑡−1 + 𝜎2
𝜀)−1/2 exp

{
− 1

2(Σ𝑡 |𝑡−1 + 𝜎2
𝜀)

(𝑠𝑖𝑡 − 𝑦𝑖𝑡 |𝑡−1)2

}
,

and combining them according to Bayes rule, yields

𝑓 (𝑦𝑡 | 𝑠𝑖𝑡 ) = (2𝜋)−1/2

(
Σ𝑡 |𝑡−1𝜎

2
𝜀

Σ𝑡 |𝑡−1 + 𝜎2
𝜀

)−1/2

× exp
{
−1

2
𝑄

}
,

where 𝑄 is denoted as follows

𝑄 =
(𝑦𝑡 − 𝑦𝑖𝑡 |𝑡−1)2

Σ𝑡 |𝑡−1
+ (𝑠𝑖𝑡 − 𝑦𝑡 )2

𝜎2
𝜀

−
(𝑠𝑖𝑡 − 𝑦𝑖𝑡 |𝑡−1)2

Σ𝑡 |𝑡−1 + 𝜎2
𝜀

=
(𝑦𝑡 − 𝑦𝑖𝑡 |𝑡−1)2

Σ𝑡 |𝑡−1
+
(𝑠𝑖𝑡 − 𝑦𝑖𝑡 |𝑡−1 − 𝑦𝑡 + 𝑦𝑖𝑡 |𝑡−1)2

𝜎2
𝜀

−
(𝑠𝑖𝑡 − 𝑦𝑖𝑡 |𝑡−1)2

Σ𝑡 |𝑡−1 + 𝜎2
𝜀

=
(𝑦𝑡 − 𝑦𝑖𝑡 |𝑡−1)2

Σ𝑡 |𝑡−1
+
(𝑠𝑖𝑡 − 𝑦𝑖𝑡 |𝑡−1)2 − 2(𝑠𝑖𝑡 − 𝑦𝑖𝑡 |𝑡−1)𝑦𝑡 + 2(𝑠𝑖𝑡 − 𝑦𝑖𝑡 |𝑡−1)𝑦𝑖𝑡 |𝑡−1 + 𝑦2

𝑡 − 2𝑦𝑡 𝑦𝑖𝑡 |𝑡−1 + (𝑦𝑖𝑡 |𝑡−1)2

𝜎2
𝜀

−
(𝑠𝑖𝑡 − 𝑦𝑖𝑡 |𝑡−1)2

Σ𝑡 |𝑡−1 + 𝜎2
𝜀

=
(𝑦𝑡 − 𝑦𝑖𝑡 |𝑡−1)2

Σ𝑡 |𝑡−1
+
(𝑦𝑡 − 𝑦𝑖𝑡 |𝑡−1)2

𝜎2
𝜀

−
2(𝑠𝑖𝑡 − 𝑦𝑖𝑡 |𝑡−1) (𝑦𝑡 − 𝑦𝑖𝑡 |𝑡−1)

𝜎2
𝜀

+
(𝑠𝑖𝑡 − 𝑦𝑖𝑡 |𝑡−1)2

𝜎2
𝜀

−
(𝑠𝑖𝑡 − 𝑦𝑖𝑡 |𝑡−1)2

Σ𝑡 |𝑡−1 + 𝜎2
𝜀

55



=

(
1

Σ𝑡 |𝑡−1
+ 1
𝜎2
𝜀

)
(𝑦𝑡 − 𝑦𝑖𝑡 |𝑡−1)2 −

2(𝑠𝑖𝑡 − 𝑦𝑖𝑡 |𝑡−1) (𝑦𝑡 − 𝑦𝑖𝑡 |𝑡−1)
𝜎2
𝜀

+
(

1
𝜎2
𝜀

− 1
Σ𝑡 |𝑡−1 + 𝜎2

𝜀

)
(𝑠𝑖𝑡 − 𝑦𝑖𝑡 |𝑡−1)2

=
𝜎2
𝜀 + Σ𝑡 |𝑡−1

𝜎2
𝜀Σ𝑡 |𝑡−1

(𝑦𝑡 − 𝑦𝑖𝑡 |𝑡−1)2 −
2(𝑠𝑖𝑡 − 𝑦𝑖𝑡 |𝑡−1) (𝑦𝑡 − 𝑦𝑖𝑡 |𝑡−1)

𝜎2
𝜀

+
Σ𝑡 |𝑡−1

𝜎2
𝜀 (Σ𝑡 |𝑡−1 + 𝜎2

𝜀)
(𝑠𝑖𝑡 − 𝑦𝑖𝑡 |𝑡−1)2

=
Σ𝑡 |𝑡−1 + 𝜎2

𝜀

Σ𝑡 |𝑡−1𝜎
2
𝜀

[
(𝑦𝑡 − 𝑦𝑖𝑡 |𝑡−1)2 − 2

Σ𝑡 |𝑡−1

Σ𝑡 |𝑡−1 + 𝜎2
𝜀

(𝑦𝑡 − 𝑦𝑖𝑡 |𝑡−1) (𝑠𝑖𝑡 − 𝑦𝑖𝑡 |𝑡−1) +
Σ𝑡 |𝑡−1

(Σ𝑡 |𝑡−1 + 𝜎2
𝜀)2

(𝑠𝑖𝑡 − 𝑦𝑖𝑡 |𝑡−1)2

]
=
Σ𝑡 |𝑡−1 + 𝜎2

𝜀

Σ𝑡 |𝑡−1𝜎
2
𝜀

(
𝑦𝑡 − 𝑦𝑖𝑡 |𝑡−1 −

Σ𝑡 |𝑡−1

Σ𝑡 |𝑡−1 + 𝜎2
𝜀

(𝑠𝑖𝑡 − 𝑦𝑖𝑡 |𝑡−1)
)2

,

yields the distribution 𝑓 (𝑦𝑡 | 𝑠𝑖𝑡 ) ∼ N
(
𝑦𝑖𝑡 |𝑡 ,Σ𝑡 |𝑡

)
with

𝑦𝑖𝑡 |𝑡 = 𝑦𝑖𝑡 |𝑡−1 + 𝐾 (𝑠𝑖𝑡 − 𝑦𝑖𝑡 |𝑡−1), 𝐾 =
Σ𝑡 |𝑡−1

Σ𝑡 |𝑡−1 + 𝜎2
𝜀

,

Σ𝑡 |𝑡 =
Σ𝑡 |𝑡−1𝜎

2
𝜀

Σ𝑡 |𝑡−1 + 𝜎2
𝜀

.

Here, 𝐾 refers to the Kalman gain. Σ𝑡 |𝑡−1 is the variance of the prior 𝑓 (𝑦𝑡 |𝑆𝑖𝑡−1). The variance of 𝑓 (𝑦𝑡+1 |𝑆𝑖𝑡 )
is:

Σ𝑡+1 |𝑡 = var(𝜌𝑦𝑡 + 𝑢𝑡+1) = 𝜌2 Σ𝑡 |𝑡−1𝜎
2
𝜀

Σ𝑡 |𝑡−1 + 𝜎2
𝜀

+ 𝜎2
𝑢 .

Hence, the steady state variance, where Σ = Σ𝑡+1 |𝑡 = Σ𝑡 |𝑡−1 is equal to

Σ = 𝜌2 Σ𝜎2
𝜀

Σ + 𝜎2
𝜀

+ 𝜎2
𝑢

Σ2 + Σ𝜎2
𝜀 = 𝜌

2Σ𝜎2
𝜀 + 𝜎2

𝑢Σ + 𝜎2
𝜀𝜎

2
𝑢

Σ2 + Σ𝜎2
𝜀 = Σ(𝜌2𝜎2

𝜀 + 𝜎2
𝑢) + 𝜎2

𝜀𝜎
2
𝑢

Σ2 + Σ(𝜎2
𝜀 − 𝜌2𝜎2

𝜀 − 𝜎2
𝑢) − 𝜎2

𝜀𝜎
2
𝑢 = 0

Σ = −𝜎
2
𝜀 − 𝜌2𝜎2

𝜀 − 𝜎2
𝑢

2
±

√︄
(𝜎2
𝜀 − 𝜌2𝜎2

𝜀 − 𝜎2
𝑢)2

4
− 𝜎2

𝜀𝜎
2
𝑢

Σ = −𝜎
2
𝜀 − 𝜌2𝜎2

𝜀 − 𝜎2
𝑢 ±

√︁
𝜎4
𝜀 − 2𝜌2𝜎4

𝜀 + 2𝜎2
𝜀𝜎

2
𝑢 + 𝜌4𝜎4

𝜀 + 2𝜌2𝜎2
𝜀𝜎

2
𝑢 + 𝜎4

𝑢

2

Σ =
1
2
(𝜎2
𝑢 − (1 − 𝜌2)𝜎2

𝜀 +
√︃[

(1 − 𝜌2)𝜎2
𝜀 − 𝜎2

𝑢

]
+ 4𝜎2

𝜀𝜎
2
𝑢 .

Finally, this yields the following distribution

𝑓 (𝑦𝑡 | 𝑠𝑖𝑡 ) ∼ N
(
𝑦𝑖𝑡 |𝑡 ,

Σ𝜎2
𝜀

Σ + 𝜎2
𝜀

)
𝑦𝑖𝑡 |𝑡 = 𝑦𝑖𝑡 |𝑡−1 + 𝐾 (𝑠𝑖𝑡 − 𝑦𝑖𝑡 |𝑡−1), 𝐾 =

Σ

Σ + 𝜎2
𝜀

,

Σ =
1
2
(𝜎2
𝑢 − (1 − 𝜌2)𝜎2

𝜀 +
√︃[

(1 − 𝜌2)𝜎2
𝜀 − 𝜎2

𝑢

]
+ 4𝜎2

𝜀𝜎
2
𝑢 .
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In a next step, we use the distorted probability distribution to derive diagnostic expectations. The
forecaster 𝑖 then overweighs representative states by using the distorted posterior

𝑓 𝜃 (𝑦𝑡 | 𝑠𝑖𝑡 ) = 𝑓 (𝑦𝑡 | 𝑠𝑖𝑡 )
(

𝑓 (𝑦𝑡 | 𝑠𝑖𝑡 )
𝑓 (𝑦𝑡 | 𝑠𝑖𝑡−1 ∪ {𝑦𝑖𝑡 |𝑡−1})

) 𝜃 1
𝑍𝑡
,

where 𝑍𝑡 is a normalization factor ensuring that 𝑓 𝜃 (𝑦𝑡 | 𝑠𝑖𝑡 ) integrates to one. For 𝑠𝑖𝑡 = 𝑦𝑖𝑡 |𝑡−1 we have that
𝑥𝑖𝑡 |𝑡 = 𝑥𝑖𝑡 |𝑡−1 = 𝜌𝑥𝑖𝑡−1 |𝑡−1, so the involved distributions look as follows

𝑓 (𝑦𝑡 | 𝑠𝑖𝑡 ) = (2𝜋)−1/2
(

Σ𝜎2
𝜀

Σ + 𝜎2
𝜀

)−1/2
exp

−
1

2 Σ𝜎2
𝜀

Σ+𝜎2
𝜀

(𝑦𝑡 − 𝑦𝑖𝑡 |𝑡 )2
 ,

𝑓 (𝑦𝑡 | 𝑠𝑖𝑡 ∪ {𝑦𝑖𝑡 |𝑡−1}) = (2𝜋)−1/2
(

Σ𝜎2
𝜀

𝜎2
𝑢 + 𝜎2

𝜀

)−1/2
exp

−
1

2 Σ𝜎2
𝜀

Σ+𝜎2
𝜀

(𝑦𝑡 − 𝑦𝑖𝑡 |𝑡−1)2
 .

Hence,

𝑓 𝜃 (𝑦𝑡 | 𝑠𝑖𝑡 ) = (2𝜋)−1/2
(

Σ𝜎2
𝜀

Σ + 𝜎2
𝜀

)−1/2
exp

−
1

2 Σ𝜎2
𝜀

Σ+𝜎2
𝜀

𝑄 𝜃


1
𝑍𝑡
,

where

𝑄 𝜃 = (𝑦𝑡 − 𝑦𝑖𝑡 |𝑡 )2 + 𝜃
[
(𝑦𝑡 − 𝑦𝑖𝑡 |𝑡 )2 − (𝑦𝑡 − 𝑦𝑖𝑡 |𝑡−1)2]

= 𝑦2
𝑡 − 2𝑦𝑡 𝑦𝑖𝑡 |𝑡 + 𝑦2

𝑖𝑡 |𝑡 + 𝜃𝑦
2
𝑡 − 2𝜃𝑦𝑡 𝑦𝑖𝑡 |𝑡 + 𝜃𝑦2

𝑖𝑡 |𝑡 − 𝜃𝑦
2
𝑡 + 2𝜃𝑦𝑡 𝑦𝑖𝑡 |𝑡−1 − 𝜃𝑦2

𝑖𝑡 |𝑡−1

= 𝑦2
𝑡 − 2𝑦𝑡 (𝑦𝑖𝑡 |𝑡 + 𝜃 (𝑦𝑖𝑡 |𝑡 − 𝑦𝑖𝑡 |𝑡−1)) + (1 + 𝜃)𝑦2

𝑖𝑡 |𝑡 − 𝜃𝑦
2
𝑖𝑡 |𝑡−1

= 𝑦2
𝑡 − 2𝑦𝑡 (𝑦𝑖𝑡 |𝑡 + 𝜃 (𝑦𝑖𝑡 |𝑡 − 𝑦𝑖𝑡 |𝑡−1)) + 𝑐(𝑦𝑖𝑡 |𝑡 , 𝑦𝑖𝑡 |𝑡−1).

From this, we can directly infer the solution by noting that 𝑐(𝑦𝑖𝑡 |𝑡 , 𝑦𝑖𝑡 |𝑡−1) is a constant that does not depend
on 𝑦𝑡 . By taking the normalization

∫
𝑓 (𝑦𝑡 | 𝑠𝑖𝑡 )𝑑𝑦 = 1 into account, we find that this yields the distribution

𝑓 𝜃 (𝑦𝑡 | 𝑠𝑖𝑡 ) ∼ N
(
𝑦𝜃
𝑖𝑡 |𝑡 ,

Σ𝜎2
𝜀

Σ+𝜎2
𝜀

)
with

𝑦𝜃
𝑖𝑡 |𝑡 = 𝑦𝑖𝑡 |𝑡 + 𝜃 (𝑦𝑖𝑡 |𝑡 − 𝑦𝑖𝑡 |𝑡−1).

Taking the Kalman filter 𝑦𝑖𝑡 |𝑡 , I can re-write

F𝜃𝑖𝑡 𝑦𝑡 = 𝑦
𝜃
𝑖𝑡 |𝑡 = 𝑦𝑖𝑡 |𝑡 + 𝜃𝐾 (𝑠𝑖𝑡 − 𝑦𝑖𝑡 |𝑡−1), 𝐾 =

𝜎2
𝑢

𝜎2
𝑢 + 𝜎2

𝜀

,

Σ =
1
2
(𝜎2
𝑢 − (1 − 𝜌2)𝜎2

𝜀 +
√︃[

(1 − 𝜌2)𝜎2
𝜀 − 𝜎2

𝑢

]
+ 4𝜎2

𝜀𝜎
2
𝑢 . �

Proposition 2: For 𝜌 > 0, under the steady state diagnostic Kalman filter, the estimated coefficients of
regression Eq. ((3.1)) and Eq. ((3.2)) at the consensus and individual level, 𝛽𝑐1 and 𝛽𝑝1 , are given by

𝛽𝑐1 =

cov
(
𝑦𝑡+ℎ − 𝑦𝜃𝑡+ℎ |𝑡 , 𝑦

𝜃
𝑡+ℎ |𝑡 − 𝑦

𝜃
𝑡+ℎ |𝑡−1

)
var

(
𝑦𝜃
𝑡+ℎ |𝑡 − 𝑦

𝜃
𝑡+ℎ |𝑡−1

) =

(
𝜎2
𝜀 − 𝜃Σ

)
𝑔(𝜎2

𝜀 ,Σ, 𝜌, 𝜃), (B.3)

𝛽
𝑝

1 =

cov
(
𝑦𝑖𝑡+ℎ − 𝑦𝜃𝑖𝑡+ℎ |𝑡 , 𝑦

𝜃
𝑖𝑡+ℎ |𝑡 − 𝑦

𝜃
𝑖𝑡+ℎ |𝑡−1

)
var

(
𝑦𝜃
𝑖𝑡+ℎ |𝑡 − 𝑦

𝜃
𝑖𝑡+ℎ |𝑡−1

) = − 𝜃 (1 + 𝜃)
(1 + 𝜃)2 + 𝜃2𝜌2 , (B.4)
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where 𝑔(𝜎2
𝜀 ,Σ, 𝜌, 𝜃) > 0 is a function of parameters. Thus, for 𝜃 ∈ (0, 𝜎2

𝜀/Σ) the diagnostic Kalman filter
entails a positive consensus coefficient 𝛽𝑐1 > 0 and a negative individual coefficient 𝛽𝑝1 < 0.

Proof of Proposition 2. The rational consensus estimate for the current state is equal to
∫
𝑦𝑖𝑡 |𝑡 = 𝑦𝑡 |𝑡 =

𝑦𝑡 |𝑡−1 + 𝐾 (𝑦𝑡 − 𝑦𝑡 |𝑡−1). Similarly, the diagnostic filter of the consensus estimate is equal to
∫
𝑦𝜃
𝑖𝑡 |𝑡 = 𝑦

𝜃
𝑡 |𝑡 =

𝑦𝑡 |𝑡 + 𝜃 (𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1). Note that 𝑦𝑡 = 𝑦𝑡 |𝑡−1 + 1
𝐾
(𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1). The consensus forecast error under rationality

is defined as follows:

𝑦𝑡 − 𝑦𝑡 |𝑡 = 𝑦𝑡 − 𝑦𝑡 |𝑡−1 − 𝐾 (𝑦𝑡 − 𝑦𝑡 |𝑡−1)

= 𝑦𝑡 |𝑡−1 +
1
𝐾
(𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1) − 𝑦𝑡 |𝑡−1 − 𝐾

(
𝑦𝑡 |𝑡−1 +

1
𝐾
(𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1) − 𝑦𝑡 |𝑡−1

)
=

1
𝐾
(𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1) −

𝐾

𝐾
(𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1)

=
1 − 𝐾
𝐾

(𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1)

Hence, the forecast error under diagnosticity is equal to

𝑦𝑡 − 𝑦𝜃𝑡 |𝑡 = 𝑦𝑡 − 𝑦𝑡 |𝑡 + 𝜃 (𝑦𝑡 − 𝑦𝑡 |𝑡−1)
= 𝑦𝑡 − 𝑦𝑡 |𝑡−1 + 𝐾 (𝑦𝑡 − 𝑦𝑡 |𝑡−1) + 𝜃

(
𝑦𝑡 |𝑡−1 + 𝐾 (𝑦𝑡 − 𝑦𝑡 |𝑡−1) − 𝑦𝑡 |𝑡−1

)
= 𝑦𝑡 − 𝑦𝑡 |𝑡−1 − 𝐾 (𝑦𝑡 − 𝑦𝑡 |𝑡−1) − 𝜃𝐾 (𝑦𝑡 − 𝑦𝑡 |𝑡−1)

= 𝑦𝑡 |𝑡−1 +
1
𝐾
(𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1) − 𝑦𝑡 |𝑡−1 − 𝐾

(
𝑦𝑡 |𝑡−1 +

1
𝐾
(𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1) − 𝑦𝑡 |𝑡−1

)
− 𝜃𝐾

(
𝑦𝑡 |𝑡−1 +

1
𝐾
(𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1) − 𝑦𝑡 |𝑡−1

)
=

1
𝐾
(𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1) +

𝐾

𝐾
(𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1) − 𝜃 (𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1)

=

(
1 − 𝐾
𝐾

− 𝜃
)
(𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1)

As a next step, we derive the diagnostic consensus forecast revision. Note that 𝑦𝑡 |𝑡−1 = 𝜌𝑦𝑡−1 |𝑡−1 and that
𝑦𝑡−1 |𝑡−2 = 𝜌𝑦𝑡 |𝑡−2. Hence, the forecast revision is equal to

𝑦𝜃
𝑡 |𝑡 − 𝑦

𝜃
𝑡 |𝑡−1 = 𝑦𝑡 |𝑡 + 𝜃 (𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1) − 𝜌𝑦𝜃𝑡−1 |𝑡−1

= 𝑦𝑡 |𝑡 + 𝜃 (𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1) − 𝜌𝑦𝑡−1 |𝑡−1 + 𝜌𝜃 (𝑦𝑡−1 |𝑡−1 − 𝑦𝑡−1 |𝑡−2)
= 𝑦𝑡 |𝑡 + 𝜃 (𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1) − 𝑦𝑡 |𝑡−1 + 𝜌𝜃 (𝑦𝑡−1 |𝑡−1 − 𝑦𝑡−1 |𝑡−2)
= (1 + 𝜃) (𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1) + 𝜌𝜃 (𝑦𝑡−1 |𝑡−1 − 𝑦𝑡−1 |𝑡−2)

Therefore, the consensus CG coefficient is given by

𝛽𝑐1 =

cov
[
𝑦𝑡 − 𝑦𝜃𝑡 |𝑡 , 𝑦

𝜃
𝑡 |𝑡 − 𝑦

𝜃
𝑡 |𝑡−1

]
𝑣𝑎𝑟

[
𝑦𝜃
𝑡 |𝑡 − 𝑦

𝜃
𝑡 |𝑡

]
=

(
1 − 𝐾
𝐾

− 𝜃
)
𝑐𝑜𝑣

[
𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1, (1 + 𝜃) (𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1) + 𝜌𝜃 (𝑦𝑡−1 |𝑡−1 − 𝑦𝑡−1 |𝑡−2)

]
𝑣𝑎𝑟

[
(1 + 𝜃) (𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1) + 𝜌𝜃 (𝑦𝑡−1 |𝑡−1 − 𝑦𝑡−1 |𝑡−2)

] .

We have then in the nominator

cov
[
𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1, (1 + 𝜃) (𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1) + 𝜌𝜃 (𝑦𝑡−1 |𝑡−1 − 𝑦𝑡−1 |𝑡−2)

]
= (1 + 𝜃)var[𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1] + 𝜌𝜃cov[𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1, 𝑦𝑡−1 |𝑡−1 − 𝑦𝑡−1 |𝑡−2],
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and in the denominator (note that var(𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1) = var(𝑦𝑡−1 |𝑡−1 − 𝑦𝑡−1 |𝑡−2))
var[(1 + 𝜃) (𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1) + 𝜌𝜃 (𝑦𝑡−1 |𝑡−1 − 𝑦𝑡−1 |𝑡−2)]
= [(1 + 𝜃)2 + 𝜌2𝜃2]var[𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1] − 2(1 + 𝜃)𝜌𝜃cov[𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1, 𝑦𝑡−1 |𝑡−1 − 𝑦𝑡−1 |𝑡−2] .

To compute the covariance between adjacent rational revisions, note that 𝑦𝑡 |𝑡 = 𝑦𝑡 |𝑡−1 + 𝐾 (𝑦𝑡 − 𝑦𝑡 |𝑡−1) and
𝑦𝑡 |𝑡−1 = 𝜌𝑦𝑡−1 |𝑡−1. Thus,

𝑦𝑡 |𝑡−1 = 𝜌𝑦𝑡−1 |𝑡−1 = 𝜌[𝑦𝑡−1 |𝑡−2 + 𝐾 (𝑦𝑡−1 − 𝑦𝑡−1 |𝑡−2)]
= 𝑦𝑡 |𝑡−2 + 𝐾 (𝜌𝑦𝑡−1 − 𝑦𝑡 |𝑡−2).

This implies that

𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1 = 𝑦𝑡 |𝑡−1 + 𝐾 (𝑦𝑡 − 𝑦𝑡 |𝑡−1) − 𝑦𝑡 |𝑡−2 − 𝐾 (𝜌𝑦𝑡−1 − 𝑦𝑡 |𝑡−2)
= 𝑦𝑡 |𝑡−1 − 𝐾𝑦𝑡 |𝑡−1 − 𝑦𝑡 |𝑡−2 + 𝐾𝑦𝑡 |𝑡−2 + 𝐾 (𝑦𝑡 − 𝜌𝑦𝑡−1)
= (1 − 𝐾) (𝑦𝑡 |𝑡−1 − 𝑦𝑡 |𝑡−2) + 𝐾𝑢𝑡
= (1 − 𝐾)𝜌(𝑦𝑡−1 |𝑡−1 − 𝑦𝑡−1 |𝑡−2) + 𝐾𝑢𝑡

As a result,

𝑐𝑜𝑣(𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1, 𝑦𝑡−1 |𝑡−1 − 𝑦𝑡−1 |𝑡−2) = (1 − 𝐾)𝜌var[𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1] .
Coming back to the formula of the beta coefficient, we have

𝛽𝑐1 =

(
1 − 𝐾
𝐾

− 𝜃
) cov

[
𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1, (1 + 𝜃) (𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1) + 𝜌𝜃 (𝑦𝑡−1 |𝑡−1 − 𝑦𝑡−1 |𝑡−2)

]
var

[
(1 + 𝜃) (𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1) + 𝜌𝜃 (𝑦𝑡−1 |𝑡−1 − 𝑦𝑡−1 |𝑡−2)

]
=

(
1 − 𝐾
𝐾

− 𝜃
) (1 + 𝜃)var

[
𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1

]
+ 𝜌𝜃 (1 − 𝐾)𝜌var

[
𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1

]
[(1 + 𝜃)2 + 𝜌2𝜃2]var

[
𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1

]
− 2(1 + 𝜃)𝜌𝜃 (1 − 𝐾)𝜌var

[
𝑦𝑡 |𝑡 − 𝑦𝑡 |𝑡−1

]
=

(
1 − 𝐾
𝐾

− 𝜃
)

(1 + 𝜃) − 𝜌2𝜃 (1 − 𝐾)
[(1 + 𝜃)2 + 𝜌2𝜃2] − 2(1 + 𝜃)𝜌2𝜃 (1 − 𝐾)

,

which is positive if and only if 1 − 𝐾 > 𝜃𝐾 . This can be seen through two observations. The sign of this
expression hinges on the first term

1 − 𝐾
𝐾

− 𝜃 > 0

1 − 𝐾 − 𝜃𝐾
𝐾

> 0

This only holds if 1 − 𝐾 > 𝜃𝐾 and if the second term is always positive. For that to hold, I show that the
nominator and denominator are positive. For the nominator, we directly see that

(1 + 𝜃) > 𝜌2𝜃 (1 − 𝐾),
because 0 < 𝜌2 < 1 and 0 < 𝐾 < 1. For the denominator, we have

[(1 + 𝜃)2 + 𝜌2𝜃2] − 2(1 + 𝜃)𝜌2𝜃 (1 − 𝐾) > 0

1 + 2𝜃 + 𝜃2 + 𝜌2𝜃2 > 2(1 + 𝜃)𝜌2𝜃 (1 − 𝐾)
1 + 2𝜃 + 𝜃2 + 𝜌2𝜃2

2(1 + 𝜃)𝜌2 > 1 − 𝐾

We know that 0 < 1−𝐾 < 1 and thus, the nominator has to be larger than the denominator that this expression
holds. This is easy to verify since 𝜌 > 0 and 𝜃 > 0, and by choosing an extremely small number 𝜖 > 0 we
have

1 + 𝑠𝑚𝑎𝑙𝑙
𝑠𝑚𝑎𝑙𝑙

> 1 − 𝐾,
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and hence, this expression holds. It is then easy to show that 𝛽𝑐1 > 0 if and only if 𝜃 < 𝜎2
𝜀/Σ.

Next, we consider individual level forecasts. The coefficient at the individual level of regression forecast
errors on forecast revisions is equal to

𝛽
𝑝

1 =

cov
[
𝑦𝑡 − 𝑦𝜃𝑖𝑡 |𝑡 , 𝑦

𝜃
𝑖𝑡 |𝑡 − 𝑦

𝜃
𝑖𝑡 |𝑡−1

]
var

[
𝑦𝜃
𝑖𝑡 |𝑡 − 𝑦

𝜃
𝑖𝑡 |𝑡−1

] .

Hence, we have that

𝑦𝑡 − 𝑦𝜃𝑖𝑡 |𝑡 = 𝑦𝑡 − 𝑦𝑖𝑡 |𝑡 − 𝜃 (𝑦𝑖𝑡 |𝑡 − 𝑦𝑖𝑡 |𝑡−1),
and note that 𝑦𝑖𝑡 |𝑡−1 = 𝜌𝑦𝑖𝑡−1 |𝑡−1

𝑦𝜃
𝑖𝑡 |𝑡 − 𝑦𝑖𝑡 |𝑡−1 = 𝑦𝑖𝑡 |𝑡 + 𝜃 (𝑦𝑖𝑡 |𝑡 − 𝑦𝑖𝑡 |𝑡−1) − 𝜌

[
𝑦𝑖𝑡−1 |𝑡−1 + 𝜃 (𝑦𝑖𝑡−1 |𝑡−1 − 𝑦𝑖𝑡−1 |𝑡−2

]
= 𝑦𝑖𝑡 |𝑡 + 𝜃 (𝑦𝑖𝑡 |𝑡 − 𝑦𝑖𝑡 |𝑡−1) − 𝑦𝑖𝑡 |𝑡−1 − 𝜌𝜃 (𝑦𝑖𝑡−1 |𝑡−1 − 𝑦𝑖𝑡−1 |𝑡−2

= (1 + 𝜃) (𝑦𝑖𝑡 |𝑡 − 𝑦𝑖𝑡 |𝑡−1) − 𝜌𝜃 (𝑦𝑖𝑡−1 |𝑡−1 − 𝑦𝑖𝑡−1 |𝑡−2).
Hence, we have

𝛽
𝑝

1 =

cov
[
𝑦𝑡 − 𝑦𝜃𝑖𝑡 |𝑡 , 𝑦

𝜃
𝑖𝑡 |𝑡 − 𝑦

𝜃
𝑖𝑡 |𝑡−1

]
var

[
𝑦𝜃
𝑖𝑡 |𝑡 − 𝑦

𝜃
𝑖𝑡 |𝑡−1

]
=

cov
[
(𝑦𝑡 − 𝑦𝑖𝑡 |𝑡 ) − 𝜃 (𝑦𝑖𝑡 |𝑡 − 𝑦𝑖𝑡 |𝑡−1), (1 + 𝜃) (𝑦𝑖𝑡 |𝑡 − 𝑦𝑖𝑡 |𝑡−1) − 𝜌𝜃 (𝑦𝑖𝑡−1 |𝑡−1 − 𝑦𝑖𝑡−1 |𝑡−2

]
var

[
(1 + 𝜃) (𝑦𝑖𝑡 |𝑡 − 𝑦𝑖𝑡 |𝑡−1) − 𝜌𝜃 (𝑦𝑖𝑡−1 |𝑡−1 − 𝑦𝑖𝑡−1 |𝑡−2

]
=

cov
[
𝑦𝑡 − 𝑦𝑖𝑡 |𝑡 , (1 + 𝜃) (𝑦𝑖𝑡 |𝑡 − 𝑦𝑖𝑡 |𝑡−1) − 𝜌𝜃 (𝑦𝑖𝑡−1 |𝑡−1 − 𝑦𝑖𝑡−1 |𝑡−2)

]
− 𝜃 (1 + 𝜃)var

[
𝑦𝑖𝑡 |𝑡 − 𝑦𝑖𝑡 |𝑡−1

]
(1 + 𝜃)2var

[
𝑦𝑖𝑡 |𝑡 − 𝑦𝑖𝑡 |𝑡−1

]
+ 𝜌2𝜃2var

[
𝑦𝑖𝑡 |𝑡 − 𝑦𝑖𝑡 |𝑡−1

]
+𝜃2𝜌cov

[
𝑦𝑖𝑡 |𝑡 − 𝑦𝑖𝑡 |𝑡−1, 𝑦𝑖𝑡−1 |𝑡−1 − 𝑦𝑖𝑡−1 |𝑡−2

]
−2(1 + 𝜃)𝜌𝜃cov

[
𝑦𝑖𝑡 |𝑡 − 𝑦𝑖𝑡 |𝑡−1, 𝑦𝑖𝑡−1 |𝑡−1 − 𝑦𝑖𝑡−1,𝑡−2

]
=

−𝜃 (1 + 𝜃)var
[
𝑦𝑖𝑡 |𝑡 − 𝑦𝑖𝑡 |𝑡−1

]
(1 + 𝜃)2var

[
𝑦𝑖𝑡 |𝑡 − 𝑦𝑖𝑡 |𝑡−1

]
+ 𝜌2𝜃2var

[
𝑦𝑖𝑡 |𝑡 − 𝑦𝑖𝑡 |𝑡−1

]
=

−𝜃 (1 + 𝜃)
(1 + 𝜃)2 + 𝜌2𝜃2

Overreaction is larger (𝛽𝑝1 < 0) for series with lower persistence. Intuitively, when persistence is low, rational
beliefs respond less to news and there is more scope for overreaction.
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C. Estimation of the Machine Efficient Benchmark

The machine efficient benchmark, or ML expectations, specified in Equation ((4.2)) is to be estimated

𝑦𝑡+ℎ = 𝛼ℎ +
𝑝∑︁
𝑗=0

(
𝜙 𝑗ℎ𝑦𝑡− 𝑗 + 𝜹 𝑗ℎ𝑮𝑡− 𝑗

)
+ 𝑢𝑡+ℎ . (C.1)

Here, 𝑦𝑡+ℎ refers to the Aaa or Baa credit spread at horizon 𝑡 + ℎ (ℎ > 0). 𝛼ℎ refers to the respective constant,
𝜙 𝑗ℎ denotes the autoregressive coefficients for lag 𝑗 , and 𝜹 𝑗ℎ summarizes the coefficients with respect to the
additional information summarized in the 𝑟𝐺-dimensional vector 𝑮𝑡 . This additional information are latent
common factors from two data datasets: a real-time macroeconomic dataset and a monthly financial dataset.
The construction of the dynamic factors are described in C1 and I discuss the exact model specification
further below. Lastly, 𝑢𝑡+ℎ denotes the respective error term.

Alternatively, I also explore a specification in which I control for subjective expectations. This specifica-
tion directly controls for the forecaster’s information set at time 𝑡 and this has not to be proxied with publicly
available data. Nevertheless, this restricts both samples drastically for the forecasting exercise and is thus
only an alternative specification. It reads as follows

𝑦𝑡+ℎ = 𝛼
(𝑘)
ℎ

+ 𝛽 (𝑘)
𝑗ℎ
F
(𝑘)
𝑡 [𝑦𝑡+ℎ] +

𝑝∑︁
𝑗=0

(
𝜙
(𝑘)
𝑗ℎ
𝑦𝑡− 𝑗 + 𝜹 (𝑘)

𝑗ℎ
𝑮𝑡− 𝑗 + 𝜸 (𝑘)

𝑗ℎ
𝑾𝑡− 𝑗

)
+ 𝑢 (𝑘)

𝑡+ℎ, (C.2)

where the 𝑘th percentile of the survey forecast distribution is added to the specification. Hence, the superscript
(𝑘) denotes the coefficients corresponding to adding the 𝑘-th percentile of the survey forecast distribution
to the specification. Furthermore, an 𝑟𝑊 -dimensional vector 𝑾𝑡 of additional information is added to the
specification, specified below.

Both model specifications can be conviently summarized as follows

𝑦𝑡+ℎ = Z′
𝑡 𝑩ℎ + 𝑢𝑡+ℎ, (C.3)

where we want to find an estimator �̂�ℎ to construct a true out-of-sample forecast. Further below, I inspect
different estimators for estimating �̂�ℎ: Bayesian shrinkage estimator in C2, Elastic Net (EN) estimator in C3,
and Bayesian Additive Regression Trees (BART) estimator in C4.

Model specification. The exact model specification is the same for both credit spreads. Hence, for
𝑦𝑡+ℎ equal to the respective credit spread the forecasting model considers the following variables in Z𝑡 =(
1, 𝑦𝑡 , . . . , 𝑦𝑡−𝑝,𝑮𝑡 , . . . ,𝑮𝑡−𝑝,𝑾𝑡 , . . . ,𝑾𝑡−𝑝

)
, which is of dimension 𝑟 = 1 + (1 + 𝑟𝐺 + 𝑟𝑊 )𝑝.

(i) Intercept.

(ii) Lags of the dependent variable (𝑦𝑡 , . . . , 𝑦𝑡−𝑝).

(iii) Factors in 𝑮𝑡 =
(
𝒇𝑀
𝑡, 𝑓 𝑖𝑛𝑎𝑙

, . . . , 𝒇𝑀
𝑡− 𝑗 , 𝑓 𝑖𝑛𝑎𝑙, 𝒇

𝐹
𝑡, 𝑓 𝑖𝑛𝑎𝑙

, . . . , 𝒇 𝐹
𝑡− 𝑗 , 𝑓 𝑖𝑛𝑎𝑙

)
from two large datasets separately:

• 𝒇𝑀
𝑡− 𝑗 , 𝑓 𝑖𝑛𝑎𝑙, for 𝑗 = 0, . . . , 𝑝 are factors formed from a real-time macroeconomic indicators

dataset with 76 real-time macroeconomic series; includes both monthly and quarterly series, with
a monthly series converted to quarterly according to the method described in the data appendix
A3,

• 𝒇 𝐹
𝑡− 𝑗 , 𝑓 𝑖𝑛𝑎𝑙, for 𝑗 = 0, . . . , 𝑝 are factors formed from a financial dataset with 147 financial series

described in the data appendix A4.

(iv) Additional information in 𝑾𝑡 :

• F(𝜇) [𝑦𝑡−1], lagged value of the mean of the survey forecast distribution,
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• F(25) [𝑦𝑡−1], lagged value of the 25th percentile of the survey forecast distribution,
• F(50) [𝑦𝑡−1], lagged value of the 25th percentile of the survey forecast distribution,
• F(75) [𝑦𝑡−1], lagged value of the 25th percentile of the survey forecast distribution,
• 𝑣𝑎𝑟 (F [𝑦𝑡 ]), lagged cross-sectional variance of the survey forecast distribution,
• 𝑠𝑘𝑒𝑤 (F [𝑦𝑡 ]), lagged cross-sectional skeweness of the survey forecast distribution,
• (𝑉𝑋𝑂𝑡 , 𝑉𝑋𝑂2

𝑡 , 𝑉𝑋𝑂
3
𝑡 ), defined as the CBOE S&P 100 volatility index included in levels, squared,

and cubic terms.

Hence, for a usual estimation setup the dimensionality of the baseline model is of medium size. The
preferred baseline specification uses 𝑔𝐶 = 10 factors from the respective data category, thus 𝑟𝐺 = 2×10, and
features two lags, 𝑝 = 2 and includes no additional information, 𝑟𝑊 = 0. Hence, 𝑟 = 1+ (1+20+0) ×2 = 43.
In the alternative specification, 𝑟𝑊 = 9 regressors are added to the specification.

C1. Dynamic Factor Estimation

Assume that X𝐶𝑡 = (𝑥𝐶1𝑡 , . . . , 𝑥
𝐶

𝑁𝐶 𝑡
) ′ generically denote a dataset of economic information in some category

𝐶 that is available in real-time analysis. Here, category 𝐶 refers to real-time macroeonomic data or monthly
financial data which are treated separately. It is assumed that each 𝑥𝐶

𝑗𝑡
(∀ 𝑗) has been suitably transformed

(such as by taking logs and differencing) so as to render the series statitonary. I assume that X𝐶𝑡 has an
approximate factor structure taking the form

X𝐶𝑡 = 𝚲𝐶 𝒇𝐶𝑡 + 𝝂𝐶𝑡 , (C.4)

where 𝒇𝐶𝑡 is an 𝑞𝐶 × 1 vector of latent common factors, 𝚲𝐶 is a corresponding 𝑁𝐶 × 𝑞𝐶 factor loadings
matrix, and 𝝂𝐶𝑡 is a 𝑁𝐶 × 1 vector of idiosyncratic errors. In an approximate dynamic factor structure setting,
the idiosyncratic errors 𝝂𝐶𝑡 are permitted to have a limited amount of cross-sectional correlation. The number
of factors 𝑞𝐶 << 𝑁𝐶 is usually significant smaller than the total number of series, 𝑁𝐶 , which facilitates the
use of high-dimensional time series datasets. In the estimation procedure, I re-estimate the factor at each
time point in the sample recursively over time using the entire history of data available in real-time prior to
each out-of-sample forecast. The following steps are performed in forming the macro and financial factors:

(i) Transform each series to stationarity (by taking logs and differencing) according to the transformations
in Table A2 and A3.

(ii) As a next step, I scale the factors along the procedure proposed in Huang, Jiang and Tong (2018). They
proposed to scale each variable in the dataset as follows. Run the following regression for variable 𝑥𝐶

𝑗𝑡

𝑦𝑡+ℎ = 𝜔
𝐶
ℎ 𝑗0 + 𝜔

𝐶
ℎ 𝑗𝑥𝑥

𝐶
𝑗𝑡 + 𝜈𝐶𝑗𝑡+ℎ, 𝜈𝐶𝑗𝑡+ℎ ∼ N

(
0, (𝜎𝐶𝑗𝑡+ℎ)

2
)
. (C.5)

Then we scale each variable with its forecasting power (i.e., predictive regression slope). Hence, for
estimating the factors we use 𝑥𝐶

𝑗𝑡
= 𝜔𝐶

ℎ 𝑗𝑥
𝑥𝐶
𝑗𝑡

.

(iii) Throughout, the factors are estimated over 𝑥𝐶
𝑗𝑡

by the method of static principal components (PCA).
The factor structure follows Equation ((C.4)) but replaces X𝐶𝑡 with X̃𝐶𝑡 = (𝑥𝐶1𝑡 , . . . , 𝑥

𝐶
𝑁𝑡

) ′. The aim is
to find the vector of latent common factors 𝒇𝐶𝑡 and the corresponding matrix of factor loadings 𝚲𝐶 .
Specifically, the 𝑇 × 𝑔𝐶 matrix 𝒇𝐶𝑡 is

√
𝑇 times the 𝑔𝐶 eigenvectors corresponding to the 𝑔𝐶 largest

eigenvalues of the 𝑇 × 𝑇 matrix X̃X̃′/(𝑇𝑁) in decreasing order. In large samples (when
√
𝑇𝑁 → ∞),

Bai and Ng (2006) show that the estimates of 𝒇𝑡 can be treated as though they were observed in the
subsequent forecasting regressions.
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(iv) Afterwards, I collect the common latent factors into the matrix 𝑇 × 𝑔𝐶 𝒇𝐶𝑡,𝑟𝑎𝑤 , where each principal
component is a column.

(v) Square the raw variables and repeat steps (ii)-(iv). Collect the common factors from the squared data
matrix into a matrix 𝒇𝐶𝑡,𝑠𝑞𝑟 , where each principal component is a column.

(vi) Then, I square the first factor in 𝒇𝐶𝑟𝑎𝑤 and call this 𝒇 2,𝐶
𝑡,𝑟𝑎𝑤1.

(vii) Finally, I construct the matrix of factors as 𝒇𝐶
𝑡, 𝑓 𝑖𝑛𝑎𝑙

= ( 𝒇𝐶𝑡,𝑟𝑎𝑤 , 𝒇𝐶𝑡,𝑠𝑞𝑟 ,1, 𝒇
2,𝐶
𝑟𝑎𝑤1), where 𝒇𝐶

𝑡,𝑠𝑞𝑟1 denotes
the first column of 𝒇𝐶𝑡,𝑠𝑞𝑟 .

C2. Bayesian Shrinkage Estimator

As a first estimator, I rely on a linear estimator with a Gaussian error term. Estimation is performed in a
Bayesian setting and extended with a shrinkage prior and a possible stochastic volatility specification. For the
shrinkage prior, I rely on the horseshoe (HS) prior as proposed in Carvalho, Polson and Scott (2010), which
offers the advantage of being free of user-chosen hyperparameters but is still highly adaptive and robust to a
variety of situations. Furthermore, it is straightforward to add stochastic volatility to the model specification
(Kim, Shephard and Chib, 1998; Jacquier, Polson and Rossi, 2002; Kastner and Frühwirth-Schnatter, 2014).
Then, the model reads as follows

𝑦𝑡+ℎ = Z′
𝑡 𝑩ℎ + 𝜀𝑡+ℎ, 𝜀𝑡+ℎ ∼ N(0, 𝜎2

𝑡+ℎ), (C.6)

where in the case of stochastic volatility, the law of motion for ln𝜎2
𝑡+ℎ is a centered autoregressive process

ln𝜎2
𝑡+ℎ = 𝜇

𝜎
𝑡+ℎ + 𝜑

𝜎
𝑡+ℎ (ln𝜎

2
𝑡+ℎ−1 − 𝜇

𝜎
𝑡+ℎ) + 𝜉

𝜎
𝑡+ℎ, 𝜉𝜎𝑡+ℎ ∼ N

(
0, (𝜎𝜎𝑡+ℎ)

2
)
. (C.7)

The horseshoe prior is given by for element 𝑗 element of the vector 𝑩ℎ in the next equation. For the sake of
brevity, I suppress the subscripts ℎ referring to the ℎth forecasting horizon. Then, 𝐵 𝑗 denotes the 𝑗 th element
and the prior is given by

𝐵 𝑗 | 𝜆 𝑗 ∼ N
(
B 𝑗 , 𝜆

2
𝑗𝜏

2
)
, 𝜆 𝑗 ∼ 𝐶+(0, 1), 𝜏 ∼ 𝐶+(0, 1), (C.8)

where 𝐶+(0, 𝑎) denotes the half-Cauchy distribution on the positive reals with scale parameter 𝑎. 𝜆 𝑗 denotes
the local shrinkage paramter that is coefficient specific and 𝜏 is a global shrinkage term that pulls all elements
in 𝑩𝑖ℎ towards zero. Makalic and Schmidt (2015) provide a simple and efficient sampling scheme based on
auxiliary variables that lead to conjugate conditional posterior distributions of all parameters. Regarding the
priors of the stochastic volatility specification, I closely follow Kastner and Frühwirth-Schnatter (2014) and its
implementation in Kastner (2016) and define 𝜇𝜎

𝑖,𝑡+ℎ ∼ N(𝑏𝜇, 𝐵𝜇), where 𝑏𝜇 = 0 and 𝐵𝜇 = 1002 to be rather
uninformative. Furthermore, the persistence paramter 𝜑𝜎

𝑖,𝑡+ℎ ∈ (−1, 1), thus (𝜑𝜎
𝑖,𝑡+ℎ + 1)/2 ∼ B(𝑎0, 𝑏0),

where 𝑎0 = 25 and 𝑏0 = 1.5 are positive hyperparameters and B(𝑎, 𝑏) denotes the Beta-distribution with
shape paremter 𝑎 and 𝑏. The prior specification implies a prior mean of 0.94 and a prior standard deviation
0.04, implying a rather persistent volatility process. For the volatility of the log-variance, Kastner (2016)
useses a Gamma distributed prior, i.e., (𝜎𝜎

𝑖,𝑡+ℎ)
2 ∼ G(1/2, 1/2𝐵𝜎), where the hyperparameter 𝐵𝜎 is not very

influential and set to unity.

C3. Elastic Net Estimator

As a second estimator, I rely on the use the Elastic Net (EN) estimator, which combines Least Absolute
Shrinkage and Selection Operator (LASSO) and ridge type penalties (Zou and Hastie, 2005) implemented
by Kuhn (2022). Suppose the goal is to estimate the coefficients of the following linear model

𝑦𝑡+ℎ = Z′
𝑡 𝑩ℎ + 𝜀𝑡+ℎ, (C.9)
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where all the independent variables are collected in the matrix Z′
𝑡 = (1, 𝑧1𝑡 , . . . , 𝑧𝐾𝑡 ) ′ and all coefficients are

summarized in the vector 𝑩ℎ = (𝑏0, 𝑏1, . . . , 𝑏𝐾 ) ′. Before the estimation all elements in 𝑿𝑡 are standardized
such that sample means are zero and sample standard deviation equals unity. The coefficient estimates are
then put back in their original scale by multiplying the slope coefficients by their respective standard deviation,
and adding back the mean (scaled by slope coefficient over standard deviation).

The naïve EN estimator �̂�ℎ incorporates both an 𝐿1 and 𝐿2 penalty and minimizes the equation

�̂�ℎ = arg min 𝐿 (𝜆1ℎ, 𝜆2ℎ, 𝑩ℎ)

= arg min
𝑏0,𝑏1,...,𝑏𝐾


𝑇∑︁
𝜏=1

(
𝑦𝜏+ℎ −Z′

𝜏𝑩ℎ
)2 + 𝜆1ℎ

𝐾∑︁
𝑗=1

|𝑏 𝑗ℎ |︸         ︷︷         ︸
𝐿𝐴𝑆𝑆𝑂

+𝜆2ℎ

𝐾∑︁
𝑗=1

𝑏2
𝑗ℎ︸       ︷︷       ︸

𝑅𝐼𝐷𝐺𝐸


.

(C.10)

By minimizing the RMSE over the training samples, I choose the optimal 𝜆1ℎ and 𝜆2ℎ values simultaneously.

C4. Bayesian Additive Regression Trees

A a third estimator, I use Bayesian Additive Regression Trees (BART, Chipman, George and McCulloch,
2010), which is a Bayesian approach to nonparametric function estimation using regression trees. Tree-based
regression models have an ability to flexibly fit interactions and nonlinearities. Models composed of sums of
regression trees have an even greater flexibility than single trees to capture interactions and nonlinearities as
well as additive effects. The BART model is implemented by Kapelner and Bleich (2016). Hence, the BART
model can be expressed as follows:

𝑦𝑡+ℎ = 𝑓 (Z𝑡 ) + 𝜀𝑡+ℎ, 𝜀𝑡+ℎ ∼ N(0, 𝜎2
𝑡+ℎ) (C.11)

where 𝑓 is a potentially nonlinear function, which is approximated with a tree-structure

𝑓 (Z𝑡 ) ≈
𝑆∑︁
𝑠=1

𝑔𝑠 (Z𝑡 | T𝑠, 𝝁𝑠) . (C.12)

There are 𝑆 distinct regression trees, each composed of a single regression tree function 𝑔𝑠 and the corres-
ponding tree structure T𝑠, and the parameters at the terminal nodes 𝝁𝑠. The dimension of 𝝁𝑠 is denoted
by 𝑏𝑠 and describes the complexity of the tree. The structure of a tree T𝑠 includes information on how any
observation recurses down the tree. For each nonterminal node of the tree, there is a splitting rule according
to which the space of explanatory variables are selected into various disjoint regions using a sequence of
binary rules. These take the form of {Z ∈ A𝑠} or {Z ∉ A𝑟 } with A𝑟 being a partition set for 𝑟 = 1, . . . , 𝑏
and Z = (Z1, . . . ,Z𝑇 } a full-data matrix of dimension 𝑇 × 𝐾 . Then the splitting rule is defined through a
splitting value 𝑐, creating partition sets of the form {Z1:𝑇 ,𝑖 ≤ 𝑐} or {Z1:𝑇 ,𝑖 > 𝑐}. This process continues
until a terminal node is reached. Then, the observation receives the leaf value of the terminal mode. The
sum of the 𝑆 leaf values becomes its predicted value. The tree’s leaf value is given by

𝑔(Z | T𝑠, 𝝁𝑠) =
𝑏∑︁
𝑟=1

𝜇𝑠,𝑟 I [Z ∈ A𝑟 ] . (C.13)

BART can be distinguished from other ensemble tree-of-trees models due to its underlying probability
model. As a Bayesian model, BART consists of a set of priors for the structure and the leaf parameters and
a likelihood for data in the terminal nodes. In the practical application, I perform cross-validation over the
hyperparameters. In particular, the number of regression trees 𝑆 = {50, 200}, the hyperparameters regulating
the variability of the leaf parameter, and the error variance.
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D. Estimation of the Macroeconomic Model

In this section, I briefly describe the estimation strategy of the macroeconomic model. The estimation of
the VAR is based on a Bayesian framework with the Minnesota prior (Doan, Litterman and Sims, 1984;
Litterman, 1986) and features stochastic volatility (Kim, Shephard and Chib, 1998; Jacquier, Polson and
Rossi, 2002; Kastner and Frühwirth-Schnatter, 2014). Hence, following Equation ((5.1)), the reduced-form
VAR(p) model reads

𝒚𝑡 = 𝒄 + 𝑨1𝒚𝑡−1 + . . . + 𝑨𝑝𝒚𝑡−𝑝 + 𝒖𝑡 , 𝒖𝑡 ∼ N𝑛 (0,𝚺𝑡 ), (D.1)

where 𝑝 is the lag order, 𝒄 is an 𝑛 × 1 vector of constants, 𝑨1, . . . , 𝑨𝑝 are 𝑛 × 𝑛 coefficient matrices, and
𝒖𝑡 denotes an 𝑛 × 1 vector of reduced-form Gaussian distributed innovations with time-varying covariance
matrix 𝚺𝑡 , factorized as follows 𝚺𝑡 = 𝑯−1𝚲𝑡𝑯−1′. Collect all VAR coefficients in 𝜶 = (𝒄′, 𝑨′

1, . . . , 𝑨
′
𝑝) ′. 𝚲𝑡

is a diagonal matrix with generic 𝑗 th element 𝜆 𝑗𝑡 and 𝑯−1 is a lower-triangular matrix with ones on its main
diagonal. By taking the logarithm of the elements on the main diagonal of the matrix 𝚲𝑡 , these elements
follow a centered autoregressive process

ln𝜆𝑖,𝑡 = 𝜇𝑖 + 𝜑 𝑗 (ln𝜆𝑖,𝑡−1 − 𝜇 𝑗) + 𝜉𝑖,𝑡 , 𝜉𝑖,𝑡 ∼ N(0, 𝜎2
𝑖, 𝜉 ), 𝑖 = 1, . . . , 𝑛. (D.2)

Gather the coefficients of the stochastic volatility specification in the following vectors: 𝝁 = (𝜇1, . . . , 𝜇𝑛),
𝝋 = (𝜑1, . . . , 𝜑𝑛), and 𝝈2

𝝃 = (𝜎2
1, 𝜉 , . . . , 𝜎

2
𝑛, 𝜉

).

Estimation. For the estimation, we pursue the approach by Chan and Eisenstat (2018) and Chan (2022). For
that, we re-write the system in its structural form:

𝑯𝒚𝑡 = �̃�𝑡 �̃� + 𝜺𝑡 , 𝜺𝑡 ∼ N (0,𝚲𝑡 ) , (D.3)

where �̃�𝑡 = (1, 𝒚′
𝑡−1, . . . , 𝒚

′
𝑡−𝑝). We can easily recover the reduced-form parameters by 𝜶 = 𝐻−1�̃�, the

reduced-form covariance matrix 𝚺𝑡 = 𝑯−1𝚲𝑡𝑯−1′, and reduced-form shocks by 𝒖𝑡 = 𝐻
−1𝜺𝑡 . Consequently,

re-write the 𝑖th equation of the system as

𝑦𝑖,𝑡 = �̃�𝑖,𝑡𝒉𝑖 + �̃�𝑡 �̃�𝑖 + 𝜀𝑖,𝑡 , 𝜀𝑖,𝑡 ∼ N(0, 𝜆2
𝑖,𝑡 ), (D.4)

where �̃�𝑖,𝑡 = (−𝑦1,𝑡 , . . . ,−𝑦𝑖−1,𝑡 ) and 𝒉𝑖 are the elements first 𝑖 − 1 elements in the 𝑖th row of 𝑯. Note that
𝑦𝑖,𝑡 depends on the contemporaneous variables 𝑦1,𝑡 , . . . , 𝑦𝑖−1,𝑡 . I estimate the system in its triangular form
and if we let 𝒙𝑖,𝑡 = (�̃�𝑖,𝑡 , �̃�𝑡 ), I can simplify to

𝑦𝑖,𝑡 = 𝒙𝑖,𝑡𝜽𝑖 + 𝜀𝑖,𝑡 , 𝜀𝑖,𝑡 ∼ N(0, 𝜆2
𝑖,𝑡 ), (D.5)

where 𝜽𝑖 = (𝒉′
𝑖
, �̃�′
𝑖
) is of dimension 𝑘𝑖 = 𝑛𝑝 + 𝑖. This allows to estimate the VAR equation-by-equation

and afterwards reduced-form coefficients can be backed out. Important to note here is that we specify priors
directly on the structural coefficients and not the reduced-form coefficients. This variant of VAR estimation
has no order invariance issues as in Carriero, Clark and Marcellino (2019) and Carriero et al. (2022).

Prior Specification. I have to elicit prior distribution on (𝜽 , 𝝁, 𝝋,𝝈2
𝜉
). I assume that the parameters are a

priori independent across equations, such that 𝑝(𝜽 , 𝝁, 𝝋,𝝈2
𝜉
) = ∏𝑛

𝑖=1 𝑝((𝜽𝑖 , 𝜇𝑖 , 𝜑𝑖 , 𝜎2
𝑖, 𝜉

).
I assume that for 𝑖 = 1, . . . , 𝑛:

𝜽𝑖 ∼ N(𝒎𝑖 ,𝑽𝑖). (D.6)

Following Litterman (1986) and Sims and Zha (1998), we consider a Minneosta-type prior shrinkage prior
setup for the VAR coefficients. First, we partition 𝒎𝑖 = (𝒎′

𝑖,𝒉,𝒎
′
𝑖,�̃�) and 𝑽𝑖 = diag

(
𝑽𝑖,𝒉,𝑽𝑖,�̃�

)
, where 𝒎𝑖,𝒉

and 𝑽𝑖,𝒉 are the hyperparameters corresponding to 𝒉𝑖 , whereas 𝒎𝑖,�̃� and 𝑽𝑖,�̃� are those related to �̃�𝑖 . Hence,
we set all elements in 𝒎𝑖,𝒉 = 0 and 𝑽𝑖,𝒉 = 10 which is relatively uninformative. For the hyperparameters
related to �̃�𝑖 , we set 𝒎𝑖,�̃� = 0 to shrink VAR coefficients towards zero. The coefficient associated with the
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first own lag is set to one for log-level data. Regarding the prior covariance matrix, we assume that 𝑽𝑖,�̃� is
diagonal with the 𝑘th element (𝑽𝑖,�̃�)𝑘 set to be

(𝑽𝑖,�̃�)𝑘 =


(
𝜅1
𝑙𝜅3

)2
, for the coefficient on the 𝑙th lag of variable 𝑖,

𝑠2
𝑖

𝑠2
𝑗

(
𝜅1𝜅2
𝑙𝜅3

)2
, for the coefficient on the 𝑙th lag of variable 𝑗 , 𝑗 ≠ 𝑖,

𝑠2
𝑖
(𝜅1𝜅4)2, for the deterministic terms,

(D.7)

We use the following hyperparameter values: 𝜅1 = 0.5, 𝜅2 = 𝜅3 = 1, and 𝜅4 = 10002.
Regarding the priors of the stochastic volatility specification, I closely follow Kastner and Frühwirth-

Schnatter (2014) and its implementation in Kastner (2016) and define 𝜇𝑖 ∼ N(𝑏𝜇, 𝐵𝜇), where 𝑏𝜇 = 0
and 𝐵𝜇 = 1002 to be rather uninformative. Furthermore, the persistence paramter 𝜑𝑖 ∈ (−1, 1), thus
(𝜑𝑖 + 1)/2 ∼ B(𝑎0, 𝑏0), where 𝑎0 = 25 and 𝑏0 = 1.5 are positive hyperparameters and B(𝑎, 𝑏) denotes the
Beta-distribution with shape paremter 𝑎 and 𝑏. The prior specification implies a prior mean of 0.94 and a prior
standard deviation 0.04, implying a rather persistent volatility process. For the volatility of the log-variance,
Kastner (2016) useses a Gamma distributed prior, i.e., 𝜎2

𝑖, 𝜉
∼ G(1/2, 1/2𝐵𝜎), where the hyperparameter

𝐵𝜎 is not very influential and set to unity.
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E. Details on Structural Scenario Analysis Counterfactuals

Building on the work of Waggoner and Zha (1999), the structural scenario analysis framework of Antolin-
Diaz, Petrella and Rubio-Ramirez (2021) provides a general framework on how to impose specific paths
on observed variables in a VAR model as conditional forecasts with and without constraints on the set of
offsetting – or driving – shocks. This has been adapted to the case of impulse response analysis with structural
scenario analysis (SSA) (Breitenlechner, Georgiadis and Schumann, 2022; Boeck and Zörner, 2023). Again,
iterate the VAR model in Equation Equation ((5.1)) forward and re-write it as

𝒚𝑇 +1,𝑇 +ℎ = 𝒃𝑇 +1,𝑇 +ℎ + 𝑴 ′𝜺𝑇 +1,𝑇 +ℎ, (E.1)

where the 𝑛ℎ×1 vector 𝒚𝑇 +1,𝑇 +ℎ = (𝒚′
𝑇 +1, 𝒚

′
𝑇 +2, . . . , 𝒚

′
𝑇 +ℎ)

′ denotes future values of the endogenous variables,
𝒃𝑇 +1,𝑇 +ℎ an autoregressive component that is due to initial conditions as of period 𝑇 , and the 𝑛ℎ × 1 vector
𝜺𝑇 +1,𝑇 +ℎ = (𝜺′

𝑇 +1, 𝜺
′
𝑇 +2, . . . , 𝜺

′
𝑇 +ℎ)

′ future values of the structural shocks. The 𝑛ℎ × 𝑛ℎ matrix 𝑴 reflects
the impulse responses and is a function of the structural VAR parameters. The definition of 𝑴 is as follows

𝑴 =


𝑴0 𝑴1 . . . 𝑴ℎ−1
0 𝑴0 . . . 𝑴ℎ−2
...

...
. . .

...

0 0 . . . 𝑴0


, (E.2)

where 𝑴0 = 𝑺 and 𝑴𝑖 =
∑𝑖
𝑗=1 𝑴𝑖− 𝑗𝑩 𝑗 with 𝑩 𝑗 = 0 if 𝑗 > 𝑝. From this representation it is clear that

the matrix 𝑴 only depends on the structural parameters. Furthermore, note that 𝑴 ′𝑴 only depends on the
reduced-form parameters. Thus, one only needs the history of observables and the reduced-form parameters
to characterize the distribution of the unconditional forecast.

Then, the unconditional forecast is distributed

𝒚𝑇 +1,𝑇 +ℎ = N
(
𝒃𝑇 +1,𝑇 +ℎ,𝑴

′𝑴
)
. (E.3)

In the framework of Antolin-Diaz, Petrella and Rubio-Ramirez (2021), structural scenarios involve

i) Conditional-on-observables forecasting, i.e., specifying paths for a subset of observables in 𝒚𝑇 +1,𝑇 +ℎ
that depart from their unconditional forecast, and/or

ii) Conditional-on-shocks forecasting, i.e., specifying the subset of structural shocks 𝜺𝑇 +1,𝑇 +ℎ that are
allowed to deviate from their unconditional distribution to produce the specified path of the observables
in (i).

In the following, we will discuss how to implement both options. Therefore, one should note that

�̃�𝑇 +1,𝑇 +ℎ ∼ N
(
𝝁𝑦 ,𝚺𝑦

)
, (E.4)

denotes the distribution of the future values of the constrained observables. The goal is to determine 𝝁𝑦 and
𝚺𝑦 such that the constraints in (i) and (ii) are satisfied simultaneously.

Under (i), conditional-on-observables forecasting can be implemented as follows. Let 𝑪 be a 𝑘𝑜 × 𝑛ℎ
selection matrix, with 𝑘𝑜 denoting the number of restrictions. Then, conditional-on-observables restrictions
can be written as

𝑪�̃�𝑇 +1,𝑇 +ℎ ∼ N
(
𝒇𝑇 +1,𝑇 +ℎ,𝛀 𝑓

)
, (E.5)

where the 𝑘𝑜 × 1 vector 𝒇𝑇 +1,𝑇 +ℎ is the mean of the distribution of the observables constrained under the
conditional forecast, and the 𝑘𝑜 × 𝑘𝑜 matrix 𝛀 𝑓 is the associated variance-covariance matrix.

Under (ii), conditional-on-shocks forecasting can be implemented as follows. Let 𝚵 be a 𝑘𝑠 ×𝑛ℎ selection
matrix, with 𝑘𝑠 denoting the number of restrictions. Then, conditional-on-shocks restrictions can be written
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as

𝚵�̃�𝑇 +1,𝑇 +ℎ ∼ N
(
𝒈𝑇 +1,𝑇 +ℎ,𝛀𝑔

)
, (E.6)

where the 𝑘𝑠×1 vector 𝒈𝑇 +1,𝑇 +ℎ is the mean of the distribution of the shocks constrained under the conditional
forecast and the 𝑘𝑠 × 𝑘𝑠 matrix 𝛀𝑔 is the associated variance-covariance matrix. Under invertability, the
shocks can always be expressed as a function of observed variables and allows us to re-write the restrictions:

𝚵𝑴 ′−1 �̃�𝑇 +1,𝑇 +ℎ = 𝚵𝑴 ′−1𝒃𝑇 +1,𝑇 +ℎ + 𝚵�̃�𝑇 +1,𝑇 +ℎ

𝑪�̃�𝑇 +1,𝑇 +ℎ = 𝑪𝒃𝑇 +1,𝑇 +ℎ + 𝚵�̃�𝑇 +1,𝑇 +ℎ,
(E.7)

and thus

𝑪�̃�𝑇 +1,𝑇 +ℎ = 𝑪𝒃𝑇 +1,𝑇 +ℎ + 𝚵�̃�𝑇 +1,𝑇 +ℎ ∼ N
(
𝒇
𝑇 +1,𝑇 +ℎ

,𝛀 𝑓

)
, (E.8)

where 𝛀 𝑓 = 𝛀𝑔.
Now we can combine the 𝑘𝑜 restrictions on the observables under conditional-on-observables forecasting

and the 𝑘𝑠 restrictions on the structural shocks under conditional-on-shocks forecasting. This amounts to
𝑘 = 𝑘𝑜 + 𝑘𝑠 total restrictions. We define the 𝑘 × 𝑛ℎ matrices 𝑪 = [𝑪 ′

,𝑪 ′] ′ and 𝑫 = [𝑴𝑪
′
,𝚵′] ′, which

allows us to write

𝑪�̃�𝑇 +1,𝑇 +ℎ = 𝑪𝒃𝑇 +1,𝑇 +ℎ + 𝑫�̃�𝑇 +1,𝑇 +ℎ ∼ N
(
𝒇𝑇 +1,𝑇 +ℎ,𝛀 𝑓

)
, (E.9)

where the 𝑘 × 1 vector 𝒇𝑇 +1,𝑇 +ℎ = [ 𝒇 ′𝑇 +1,𝑇 +ℎ, 𝒇
′
𝑇 +1,𝑇 +ℎ

] ′ stacks the means of the distribution and the 𝑘 × 𝑘
matrix 𝛀 𝑓 = diag(𝛀 𝑓 ,𝛀 𝑓 ) denotes the associated variance-covariance matrix.

Following the framework in Antolin-Diaz, Petrella and Rubio-Ramirez (2021) and given the restrictions
specified above, we can derive solutions for 𝝁𝑦 and 𝚺𝑦 . Define the restricted future shocks

�̃�𝑇 +1,𝑇 +ℎ ∼ N(𝝁𝜀 ,𝚺𝜀), (E.10)

where 𝚺𝜀 = 𝑰𝑛ℎ + 𝚿𝜀 , such that 𝝁𝜀 and 𝚿𝜀 denote the deviation of the mean and covariance matrix from
their unconditional counterparts. Using Equation (E.9), we match the first and second moment to get

𝒇𝑇 +1,𝑇 +ℎ = 𝑪𝒃𝑇 +1,𝑇 +ℎ + 𝑫𝝁𝜀 , (E.11)
𝛀 𝑓 = 𝑫 (𝑰𝑛ℎ + 𝚿𝜀)𝑫 ′. (E.12)

Depending on 𝑘 , the number of restrictions, and 𝑛ℎ, the length of �̃�𝑇 +1,𝑇 +ℎ, the systems of Equation (E.11)
and Equation (E.12) may have multiple solutions (𝑘 < 𝑛ℎ), one solution (𝑘 = 𝑛ℎ), or no solution (𝑘 > 𝑛ℎ).
Since 𝑘 < 𝑛ℎ is the most interesting case, the solution are given by

𝝁𝜀 = 𝑫∗ (
𝒇𝑇 +1,𝑇 +ℎ − 𝑪𝒃𝑇 +1,𝑇 +ℎ

)
, (E.13)

𝚿𝜀 = 𝑫∗𝛀 𝑓 𝑫
∗′ − 𝑫∗𝑫𝑫 ′𝑫∗′, (E.14)

where 𝑫∗ is the Moore-Penrose inverse of 𝑫. Equation (E.13) shows that the path of the implied structural
shocks under the conditional forecast depend on its deviation from the unconditional forecast. Furthermore,
Equation (E.14) shows that the variance of the implied future structural shocks depends on the uncertainty
the researcher attaches to the conditional forecast. If the uncertainty is zero (𝛀 𝑓 = 0), then 𝚺𝜀 = 0. This
means that a unique path for 𝝁𝜀 can be found.

Combining Equation (E.3), Equation (E.13), and Equation (E.14), we get

𝝁𝑦 = 𝒃𝑇 +1,𝑇 +ℎ + 𝑴 ′𝑫∗ (
𝒇𝑇 +1,𝑇 +ℎ − 𝑪𝒃𝑇 +1,𝑇 +ℎ

)
, (E.15)

𝚺𝑦 = 𝑴 ′𝑴 − 𝑴 ′𝑫∗ (
𝛀 𝑓 − 𝑫𝑫 ′) 𝑫∗′𝑴 . (E.16)

As before, if 𝛀 𝑓 = 0, then 𝚺𝑦 = 0 and thus there is no uncertainty about the path of the observables under
the imposed restrictions.
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E1. Restrictions in the VAR

The VAR in section 5.3 features 𝑛 = 9 variables with belief distortions ordered last and the EBP ordered
after real GDP, real consumption, real investment, and prices. The remaining variables in the VAR after the
EBP are the respective credit spread, the S&P 500, the federal funds rate, and the belief distortion series. I
constrain the effect of the financial shock on belief distortions to be zero. Denote with 𝒆𝑖 a 𝑛 × 1 vector of
zeros with unity at the 𝑖-th position.

Under (i), conditional-on-observable forecasting, we impose

𝑪 = 𝑰ℎ ⊗ 𝒆′9, (E.17)

𝒇𝑇 +1,𝑇 +ℎ = 0ℎ×1, (E.18)

𝛀 𝑓 = 0ℎ×ℎ . (E.19)

These equations impose that the conditional forecast that underlies the impulse response of belief distortions
(which is ordered last in the VAR) is constrained to be zero over all horizons 𝑇 + 1, . . . , 𝑇 + ℎ. Furthermore,
we do not allow for any uncertainty.

Under (ii), conditional-on-shocks forecasting, we impose

𝚵ℎ×𝑛ℎ = 𝑰ℎ ⊗ 𝒆′5 (E.20)
𝒇
𝑇 +1,𝑇 +ℎ

= 𝒈𝑇 +1,𝑇 +ℎ = [1, 01×ℎ−1] ′ (E.21)

𝛀 𝑓 = 𝛀𝑔 = 0ℎ×ℎ (E.22)

Equation (E.20) selects the financial shock via the EBP ordered fifth in 𝜺𝑡 for the entire impulse response
horizon. We constrain that the financial shock is equal to unity in the first period and zero afterwards, as
indicated by Equation (E.21). The first element constrains it to be unity on impact in period 𝑇 + 1 and zero
for 𝑇 + 2, 𝑇 + 3, . . . , 𝑇 + ℎ. Hence, in 𝑇 + 1, 𝑇 + 3, . . . , 𝑇 + ℎ all structural shocks except the financial shock
are allowed to vary. Lastly, Equation (E.22) specifies that we allow for no uncertainty. It is also interesting
to consider the stacked matrices 𝑪 and 𝑫 which look as follows

𝑪 =

(
𝑪ℎ×𝑛ℎ

𝑪
ℎ (𝑛−1)×𝑛ℎ

)
ℎ𝑛×𝑛ℎ

, 𝑫 =

(
𝑪ℎ×𝑛ℎ𝑴 ′

𝑛ℎ×𝑛ℎ
𝚵ℎ (𝑛−1)×𝑛ℎ

)
ℎ𝑛×𝑛ℎ

, (E.23)

where 𝑪 = 𝚵𝑴
′−1.

E2. How Plausible is the Counterfactual?

Generally, structural scenario analysis counterfactuals based on SVARs are not prone to the Lucas critique
(Lucas, 1976). However, if the implied shocks are so unusual the analysis might becomes subject to the
Lucas critique anyway. Hence, measures of plausibility of the created counterfactual scenario are a remedy.
We use two measures: the 𝑞-divergence proposed in Antolin-Diaz, Petrella and Rubio-Ramirez (2021) and
adapted to the case of impulse response functions by Breitenlechner, Georgiadis and Schumann (2022) and
the modesty statistic proposed by Leeper and Zha (2003). These measures intend to measure by how much
the structural scenario deviates from its unconditional counterpart. When this deviation becomes too large,
the scenario might be implausible.

Antolin-Diaz, Petrella and Rubio-Ramirez (2021) propose to use the Kullback-Leibler (KL) divergence
as a measure how plausible a scenario is. Denote with D(N𝑆𝑆 | |N𝑈𝐹 ) the KL divergence between the
distributions of the structural scenario analysis N𝑆𝑆 and the unconditional distribution N𝑈𝐹 . While it is
straightforward to compute D(N𝑆𝑆 | |N𝑈𝐹 ), it is difficult to grasp whether any value for the KL divergence
is large or small. In other words, the KL divergence can be easily used to rank scenarios, but it is hard to
understand how far away they are from the unconditional forecast. Therefore, Antolin-Diaz, Petrella and
Rubio-Ramirez (2021) propose to compare the KL divergence with the divergence between two binomial
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distributions, one with probability 𝑞 and the other with probability 𝑝 = 0.5. The idea is to compare the
implied counterfactual distribution with their unconditional distribution, which translates into a comparison
of the binomial distributions of a fair and a biased coin. If the probability 𝑞 is near to to 𝑝, then this suggests
that the distribution of the offsetting shocks is not at all far from the unconditional distribution. Antolin-Diaz,
Petrella and Rubio-Ramirez (2021) suggest calibrating the KL divergence from N𝑈𝐹 to N𝑆𝑆 to a parameter
𝑞 that would solve the following equation D (B(𝑛ℎ, 0.5) | |B(𝑛ℎ, 𝑞)) = D (N𝑆𝑆 | |N𝑈𝐹 ). The solution to the
equation is

𝑞 = 0.5 ∗ ©­«1 +

√︄
1 − exp

(
− 2𝑧
𝑛ℎ

)ª®¬ with 𝑧 = D (N𝑆𝑆 | |N𝑈𝐹 ) . (E.24)

As Breitenlechner, Georgiadis and Schumann (2022) point out, in the context of impulse responses the
KL divergence has to be slightly adjusted, because Antolin-Diaz, Petrella and Rubio-Ramirez (2021) propose
their measure in the context of conditional forecasts relative to an unconditional forecast. As before, the
unconditional scenario is the case with only a single shock of unity size, which occurs in 𝑇 + 1 with certainty.
More formally, 𝜺𝑇 +1,𝑇 +ℎ = (𝒆′5, 0𝑛(ℎ−1)×1) ′ denotes the unconditional impulse response of a financial shock.
𝒆𝑖 denotes the unit vector with unity on the 𝑖-th position. For the structural scenario analysis counterfactual,
we impose the restrictions specified above (i.e., belief distortions do not react to a financial shock). Hence,
we set

UF: 𝝁𝑈𝐹 = 𝑴 ′(𝒆′5, 0𝑛(ℎ−1)×1) ′ (E.25)
SS: 𝝁𝑆𝑆 = 𝜇𝑦 , (E.26)

where 𝝁𝑦 is given by Equation ((E.15)). Since we impose this with certainty, 𝚿 = 0 such that the shocks have
their unconditional variance. Hence, 𝚺𝑈𝐹 = 𝚺𝑆𝑆 = 𝚺𝜀 = 𝑰. The KL divergence between the distribution of
the shocks under the unconditional and conditional scenario is then given by

D(N𝑆𝑆 | |N𝑈𝐹 ) =
1
2

(
tr

(
𝚺−1
𝑆𝑆𝚺𝑈𝐹

)
+ (𝝁𝑆𝑆 − 𝝁𝑈𝐹 ) ′𝚺−1

𝑆𝑆 (𝝁𝑆𝑆 − 𝝁𝑈𝐹 ) − 𝑛ℎ + ln
(

det𝚺𝑆𝑆
det𝚺𝑈𝐹

))
, (E.27)

where 𝝁𝜀 and 𝚺𝜀 are given by Equation ((E.13)) and Equation ((E.14)). Furthermore, we discard any SSA
counterfactuals when the offsetting shocks are particularly unlikely. We set this to be above 𝑞 > 0.9.

The second plausibility measure is the one of modest intervention or modesty statistic used in Leeper and
Zha (2003). The measure reports how unusual the path for policy shocks is relative to the typical size of these
shocks, which are needed to impose the counterfactual restriction. For instance, if the counterfactual implies
a sequence of shocks close to their unconditional mean, the policy intervention is considered modest, in the
sense that the shocks are unlikely to induce agents to revise their beliefs about policy rules and the structure
of the economy. Instead, if the counterfactual involves an unlikely sequence of shocks the analysis is likely
to be prone to the critique by Lucas (1976). The offsetting shocks are considered to be modest if the statistic
is smaller than two in absolute value.

E3. Additional Results

The plausibility of the counterfactuals obtained by the structural scenario analysis depends on the offsetting
structural shocks. I show here the modesty statistic of Leeper and Zha (2003) and the 𝑞-divergence proposed
by Antolin-Diaz, Petrella and Rubio-Ramirez (2021). Both are presented in Figure E1. The top panel shows
the modesty statistic, which are the implied offsetting shocks that impose the counterfactual constraint for
belief distortions. The offsetting shocks are modest if the statistic is smaller than two in absolute values. This
is confirmed and thus the materialisation is unlikely to induce agents to adjust their expectation formation
and beliefs about the structure of the economy showing no sign for the Lucas critique. In the lower panel,
the 𝑞-divergence indicates how strongly the distribution of offsetting shocks in the counterfactual deviate
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Figure E1: Plausbility Statistics of Counterfactuals.

(a) Model with Aaa Belief Distortion.
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(b) Model with Baa Belief Distortion.
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Notes: The upper panel shows the modesty statistic of Leeper and Zha (2003) and the lower panel shows the distribution of
the 𝑞-divergence proposed by Antolin-Diaz, Petrella and Rubio-Ramirez (2021). The modesty statistic reports the implied
shocks that impose the counterfactual constraint for belief distortions. The black dashed line denotes the posterior median
responses while gray shaded areas depict the 68/80/90 percent confidence intervals.

from their unconditional distribution translated into a comparison of the binomial distribution of a fair and a
biased coin. Again, the test does not indicate that the distribution of offsetting shocks in the counterfactual
is notably different from the unconditional distribution.

Lastly, in Figure E2 I report the impulse responses of all variables in the model including its counterfactual
response when shutting down the transmission channel of the financial shock via belief distortions. This
complements Figure 5, in which I only show a subset of the responses for brevity.
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Figure E2: Counterfactual Impulse Response Functions to a Financial Shock (Extended Baseline).

(a) Model with Aaa Belief Distortion.
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(b) Model with Baa Belief Distortion.

Real GDP

0 4 8 12 16 20 24

−0.6

−0.4

−0.2

0.0

Real Consumption

0 4 8 12 16 20 24

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1
Real Investment

0 4 8 12 16 20 24

−2

−1

0

1

GDP Deflator

0 4 8 12 16 20 24

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

Excess Bond Premium

0 4 8 12 16 20 24

−0.1

0.0

0.1

0.2

0.3

Baa Spread

0 4 8 12 16 20 24

−0.1

0.0

0.1

0.2

0.3

S&P 500

0 4 8 12 16 20 24

−5

−4

−3

−2

−1

0

1

Federal Funds Rate

0 4 8 12 16 20 24

−0.3

−0.2

−0.1

0.0

0.1

0.2

Baa Belief Distortions

0 4 8 12 16 20 24

−0.10

−0.05

0.00

0.05

0.10

Notes: Impulse response functions of the extended baseline VAR. Black line denotes median response while gray shaded
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F. Diagnostics of the Belief Distortion Series

As discussed in the paper, I perform several validity checks on the belief distortion series. First, I investigate
whether autocorrelation is present in the distortion series. Figure F1 depicts the autocorrelation function. I
also perform Granger causality tests, depicted in Table F1. Last, I compute correlations to other structural
shocks from the literature, which I show in Figure F2 and Table F2. In particular, I compare the belief
distortions in the Aaa and Baa credit spread to high-frequency monetary policy shocks in Jarociński and
Karadi (2020) (labelled HFI Monetary Policy), the narrative fiscal policy shocks by Romer and Romer (2010)
(labelled RR Fiscal Policy), the uncertainty indicators based on Jurado, Ludvigson and Ng (2015) (labelled
Financial Uncertainty, Macro Uncertainty and Real Uncertainty as well as first differences thereof, indicated
with (diff)), the economic policy uncertainty indicator by Baker, Bloom and Davis (2016) (labelled Economic
Policy Uncertainty as well as first differences thereof, indicated with (diff)), the extended high-frequency
monetary policy instrument by Miranda-Agrippino and Ricco (2021) (labelled HFI Monetary Policy Ext1
and HFI Monetary Policy Ext2), the extended monetary policy measured constructed by Romer and Romer
(2004) and extended by Breitenlechner (2018) (labelled RR Monetary Policy 1 and RR Monetary Policy 2),
high-frequency oil supply and supply news shocks by Känzig (2021) (labelled HFI Oil Supply and HFI Oil
News), and the structural oil supply and demand as well as the aggregate demand shock by Kilian (2009)
(labelled Oil Supply, Aggregate Demand (Oil), and Oil Demand). Additionally, I also compare the belief
distortion series to the excess bond premium (Gilchrist and Zakrajšek, 2012), its first difference, and the
residuals of the VAR specified to construct financial shocks in Gilchrist and Zakrajšek (2012). Lastly,
I compare the measure of belief distortions to the financial shocks constructed in Caldara et al. (2016),
indicated by CFAGZ1 (𝜎-EBP identification) and CFAGZ2 (EBP-𝜎 identification). Correlations are depicted
in Figure F2 and in Table F2.

The diagnostics of the belief distortion series reveal the following. For both series, there is no evidence
that the series is serially autocorrelated. Granger causality tests for different lag lengths shows that there is
no predictive causality running from any of those variables to the constructed series of belief distortions.
Regarding the correlation structure to other indicators from the literature, an interesting picture emerges.
When compared to other identified, plausible exogenous macroeconomic shocks (monetary, fiscal, and oil),
correlations are low (𝜌 < 0.20) and statistically insignificant. However, turning to the financial shocks
correlations are higher and mostly statistically significant. The same holds true when inspecting correlations
to uncertainty indicators. All these correlations are negative. For the Aaa belief distortion series correlations
are safely below 𝜌 < 0.40 and for the Baa belief distortion series go up to around 𝜌 ≈ 0.60. Furthermore,
those correlations show statistical significance. In particular, statistical significance is high for the uncertainty
indicators in first differences since they are in their original form quite persistent time series. Furthermore,
it is interesting that only the financial shock from Caldara et al. (2016) with the 𝜎-EBP identification is
statistically significant while the other is not.
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Table F1: Granger Causality Tests.

Variable Aaa Baa Aaa Baa Aaa Baa Aaa Baa

𝑝 = 1 𝑝 = 2 𝑝 = 3 𝑝 = 4

FEDFUNDS 0.56 0.89 0.75 0.66 0.88 0.75 0.55 0.78
GS1 0.51 0.88 0.70 0.96 0.80 0.59 0.81 0.27
GS5 0.44 0.55 0.46 0.52 0.61 0.69 0.62 0.25
GS10 0.52 0.53 0.37 0.40 0.54 0.57 0.56 0.39
GDPC1 0.15 0.09 0.23 0.18 0.36 0.34 0.40 0.38
UNRATE 0.51 0.28 0.50 0.47 0.71 0.71 0.58 0.44
BUSLOANS 0.67 0.98 0.54 0.26 0.55 0.39 0.65 0.48
SP500 0.21 0.77 0.04 0.13 0.03 0.36 0.05 0.25
NASDAQCOM 0.37 0.96 0.11 0.58 0.12 0.91 0.10 0.35
GDPDEF 0.43 0.52 0.55 0.72 0.66 0.87 0.83 0.86
CPIAUCSL 0.27 0.63 0.25 0.55 0.36 0.60 0.51 0.27
Notes: Table shows p-values of a series of Granger causality tests of the respective belief distortion
series using a selection of macroeconomic and financial variables. Series are transformed to
stationarity according to transformations provided in Table A1. The lag order is given above and in
terms of deterministics, only a constant term is included.

Figure F1: Autocorrelation Function of Belief Distortion Series.
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Figure F2: Correalation to Other Structural Shocks.
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Table F2: Correlations to Other Structural Shocks.

Variable Aaa Belief Distortion Baa Belief Distortion

Est. p-val Est. p-val

Financial Shocks
Excess Bond Premium 0.12 0.20 0.24 0.05
Excess Bond Premium (diff) 0.33 0.00 0.49 0.00
Excess Bond Premium (struc) 0.22 0.02 0.34 0.00
GFAGZ-1 0.38 0.00 0.41 0.00
GFAGZ-2 −0.07 0.44 −0.03 0.82

Uncertainty Indicators
Financial Uncertainty 0.25 0.00 0.37 0.00
Macro Uncertainty 0.06 0.46 0.18 0.09
Real Uncertainty 0.14 0.11 0.29 0.01
Economic Policy Uncertainty 0.15 0.10 0.28 0.01
Financial Uncertainty (diff) 0.32 0.00 0.57 0.00
Macro Uncertainty (diff) 0.24 0.01 0.43 0.00
Real Uncertainty (diff) 0.25 0.00 0.37 0.00
Economic Policy Uncertainty (diff) 0.37 0.00 0.43 0.00

Macroeconomic Shocks
HFI Monetary Policy 0.03 0.79 0.08 0.59
RR Fiscal Policy 0.07 0.55 0.07 0.64
HFI Monetary Policy Ext1 −0.09 0.41 −0.12 0.48
HFI Monetary Policy Ext2 −0.18 0.07 −0.21 0.13
RR Monetary Policy 1 −0.15 0.13 −0.14 0.25
RR Monetary Policy 2 0.10 0.36 0.12 0.48
HFI Oil Supply −0.01 0.94 −0.16 0.16
HFI Oil News −0.19 0.03 −0.28 0.01
Oil Supply 0.18 0.14 0.09 0.64
Aggregate Demand (Oil) 0.12 0.33 −0.12 0.56
Oil Demand −0.01 0.92 −0.30 0.13
Notes: Table shows estimated Pearson’s moment correlations coefficients (Est.) and according p-values
(p-val) of a test against zero correlation.
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G. Convergence Diagnostics

In this section, I evaluate convergence of the model presented in section 4. To proceed, I look at three
different convergence diagnostics. In an ideal setting, the sampler returns independent draws. The stronger
the autocorrelation in the sampler, the more draws are needed. To evaluate the extent of autocorrelation in
the MCMC chain, I use three different statistics. First, I compute inefficiency factors indicating how many
draws are needed for drawing one identically and independently distributed draw. Second, I have a look at
the Raftery and Lewis’s diagnostic statistic (Raftery and Lewis, 1992). It is also a measure of autocorrelation
and returns a dependence factor which should not exceed 5 in the ideal setting. Third, I examine Geweke’s
convergence diagnostic (Geweke et al., 1991). This is a test of equality of the means of the first 10% and last
50% of the MCMC chain. Here, I report the share of Z-scores exceeding the critical value of 1.96.

For all models, convergence is safely achieved. While inefficiency factors are around 2-3, the dependence
factors are even lower and do not exceed 2. Furthermore, when looking at the share of Z-scores exceeding the
critical value of 1.96, it does not seem to be an issue. In the last column of Table G1, I report the percentage
of retained draws of stationary draws. This percentage share fluctuates more, but the sampler always retain
at least 20% of all draws for posterior analysis.

Table G1: Convergence Statistics.

Model Inefficiency Factor Dependence factor Geweke’s Z-scores % draws retained

Baseline Model with Belief Dis-
tortions

– Aaa 2.73 1.53 0.05 78.50
– Baa 2.93 1.67 0.03 59.50

Extended Baseline Model with
Belief Distortions

– Aaa 2.79 1.55 0.06 74.66
– Baa 3.00 1.60 0.06 52.60

Model with Survey Forecast Er-
rors

– Aaa 2.76 1.57 0.08 87.16
– Baa 3.11 1.75 0.04 62.12

Model with Machine Learning
Forecast Errors

– Aaa 2.57 1.48 0.07 80.06
– Baa 3.52 1.77 0.04 59.62
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H. Additional Results: Forecasting

Table H1: Forecasting Evaluation.

h=1 h=2 h=3 h=4
Aaa spread Baa spread Aaa spread Baa spread Aaa spread Baa spread Aaa spread Baa spread

RW 0.192 0.391 0.288 0.617 0.342 0.764 0.391 0.866
Autoregressive Models

AR(1) 0.193 0.397 0.287 0.610 0.339 0.728 0.377 0.783
AR(2) 0.193 0.389 0.292 0.616 0.343 0.800 0.380 0.843
AR(1)-SV 0.195 0.391 0.298 0.615 0.361 0.755 0.417 0.851
AR(2)-SV 0.194 0.370 0.300 0.610 0.359 0.748 0.417 0.858

Autoregressive Distributed Lag Models
ADL(1) 0.196 0.551 0.308 0.728 0.379 0.885 0.421 0.863
ADL(2) 0.195 0.527 0.303 0.682 0.361 0.835 0.398 0.785
ADL(1)-SV 0.199 0.374 0.318 0.620 0.351 0.803 0.461 0.866
ADL(2)-SV 0.201 0.372 0.301 0.612 0.396 0.796 0.473 0.866

Machine Learning Approaches
EN(1) 0.211 0.607 0.315 0.810 0.424 0.976 0.497 0.872
EN(2) 0.219 0.535 0.321 0.683 0.353 0.859 0.397 0.792
BART(1) 0.218 0.433 0.297 0.605 0.322 0.645 0.344 0.696
BART(2) 0.219 0.453 0.293 0.606 0.323 0.632 0.343 0.709

Subjective and Objective Expectations

RMSEF 0.230 0.449 0.296 0.615 0.343 0.720 0.386 0.788
RMSEE 0.193 0.364 0.278 0.535 0.309 0.772 0.369 0.852
min[RMSE] 0.192 0.370 0.287 0.605 0.322 0.632 0.343 0.696
RMSEE/RMSEF 0.837 0.810 0.941 0.870 0.901 1.073 0.957 1.081
RMSEE/min [RMSE] 1.005 0.984 0.968 0.885 0.959 1.222 1.076 1.225
Notes: True out-of-sample performance in terms of RMSEs. The bold figures indicate the best performing model for a given
variable and time horizon. The following models nested in Equation ((4.2)) are considered: RW - random walk, AR - autoregressive
model, ADL - autoregressive distributed lag model, EN - Elastic Net, BART - Bayesian Additive Regression Trees. The (first) number
in the parentheses indicates the lag length. SV refers to stochastic volatility.
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I. Additional Results: Macroeconomic Model

Figure I1: Impulse Response Functions to a Financial Shock (Belief Distortions, Short Sample).
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Notes: Impulse response functions of the baseline VAR with the short sample starting in 1999Q1. Black line denotes
median response while gray shaded areas denote the 68/80/90 percent confidence intervals. The responses of real GDP, real
consumption, real investment, GDP deflator, and the stock market index are scaled in percent, while the excess bond premium,
the federal funds rate, and belief distortions are scaled in percentage points.

Figure I2: Impulse Response Functions to a Financial Shock (Survey Forecast Errors, Short Sample).
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Notes: Impulse response functions of the baseline VAR with the short sample starting in 1999Q1. Black line denotes
median response while gray shaded areas denote the 68/80/90 percent confidence intervals. The responses of real GDP, real
consumption, real investment, GDP deflator, and the stock market index are scaled in percent, while the excess bond premium,
the federal funds rate, and belief distortions are scaled in percentage points.
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Figure I3: Alternative Specification with Aaa Belief Distortions.

(a) Impulse Response Functions.
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(b) Forecast Error Variance Decompositions.
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Notes: Baseline VAR with belief distortions of the alternative specification. Sample ranges from 1995Q2 to 2020Q1. Black
line denotes median response while gray shaded areas denote the 68/80/90 percent confidence intervals. The impulse responses
of real GDP, real consumption, real investment, GDP deflator, and the stock market index are scaled in percent, while the
excess bond premium, the federal funds rate, and belief distortions are scaled in percentage points.
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Figure I4: Impulse Response Functions to a Financial Shock (ML Forecast Errors).

(a) Model with Aaa Belief Distortion.
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(b) Model with Baa Belief Distortion.
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Notes: Impulse response functions of the VAR with ML forecast errors. Black line denotes median response while gray
shaded areas denote the 68/80/90 percent confidence intervals. The responses of real GDP, real consumption, real investment,
GDP deflator, and the stock market index are scaled in percent, while the excess bond premium, the federal funds rate, and
belief distortions are scaled in percentage points.
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Figure I5: Robustness: Impulse Response Functions to a Financial Shock (Baseline, Higher-Order Distortions).

(a) Model with Aaa Belief Distortion.
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(b) Model with Baa Belief Distortion.
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Notes: Impulse response functions of the baseline VAR. Black line denotes median response while gray shaded areas denote
the 68/80/90 percent confidence intervals. Dashed, grey lines denote the median responses of the VAR with higher-order belief
distortions (two-, three-, and four-step ahead) and mean belief distortions over all horizons (mean over one-, two-, three-, and
four-step ahead). The responses of real GDP, real consumption, real investment, GDP deflator, and the stock market index are
scaled in percent, while the excess bond premium, the federal funds rate, and belief distortions are scaled in percentage points.
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Figure I6: Robustness: Impulse Response Functions to a Financial Shock (Survey Forecast Errors, Higher-Order
Distortions).

(a) Model with Aaa Belief Distortion.
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(b) Model with Baa Belief Distortion.
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Notes: Impulse response functions of the VAR featuring survey forecast errors. Black line denotes median response while
gray shaded areas denote the 68/80/90 percent confidence intervals. Dashed, grey lines denote the median responses of the
VAR with higher-order belief distortions (two-, three-, and four-step ahead) and mean belief distortions over all horizons
(mean over one-, two-, three-, and four-step ahead). The responses of real GDP, real consumption, real investment, GDP
deflator, and the stock market index are scaled in percent, while the excess bond premium, the federal funds rate, and belief
distortions are scaled in percentage points.
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Figure I7: Robustness: Impulse Response Functions to a Financial Shock (Baseline, Horseshoe Shrinkage Prior).

(a) Model with Aaa Belief Distortion.
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(b) Model with Baa Belief Distortion.
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Notes: Impulse response functions of the baseline VAR estimated with the horseshoe shrinkage prior. Black line denotes
median response while gray shaded areas denote the 68/80/90 percent confidence intervals. The responses of real GDP, real
consumption, real investment, GDP deflator, and the stock market index are scaled in percent, while the excess bond premium,
the federal funds rate, and belief distortions are scaled in percentage points.
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Figure I8: Robustness: Impulse Response Functions to a Financial Shock (Baseline, No Stochastic Volatility).

(a) Model with Aaa Belief Distortion.
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(b) Model with Baa Belief Distortion.

Real GDP

0 4 8 12 16 20 24

−0.6

−0.4

−0.2

0.0

0.2

Real Consumption

0 4 8 12 16 20 24

−0.4

−0.3

−0.2

−0.1

0.0

0.1

Real Investment

0 4 8 12 16 20 24

−3

−2

−1

0

1

2
GDP Deflator

0 4 8 12 16 20 24

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

Excess Bond Premium

0 4 8 12 16 20 24

−0.1

0.0

0.1

0.2

0.3

S&P 500

0 4 8 12 16 20 24

−4

−2

0

2

Federal Funds Rate

0 4 8 12 16 20 24

−0.3

−0.2

−0.1

0.0

0.1

0.2

Baa Belief Distortions

0 4 8 12 16 20 24

−0.05

0.00

0.05

Notes: Impulse response functions of the baseline VAR estimated without stochastic volatility. Black line denotes median
response while gray shaded areas denote the 68/80/90 percent confidence intervals. The responses of real GDP, real
consumption, real investment, GDP deflator, and the stock market index are scaled in percent, while the excess bond premium,
the federal funds rate, and belief distortions are scaled in percentage points.

85



Appendix References

Antolin-Diaz J., Petrella I. and Rubio-Ramirez J F. (2021) “Structural Scenario Analysis with SVARs”.
Journal of Monetary Economics Vol. 117, pp. 798–815.

Bai J. and Ng S. (2006) “Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-
Augmented Regressions”. Econometrica Vol. 74(4), pp. 1133–1150.

Baker S R., Bloom N. and Davis S J. (2016) “Measuring Economic Policy Uncertainty”. Quarterly Journal
of Economics Vol. 131(4), pp. 1593–1636.

Bianchi F., Ludvigson S C. and Ma S. (2022) “Belief Distortions and Macroeconomic Fluctuations”.
American Economic Review Vol. 112(7), pp. 2269–2315.

Boeck M. and Zörner T O. (2023) Natural Gas Prices and Unnatural Propagation Effects: The Role of
Inflation Expectations in the Euro Area. Tech. rep. Available at SSRN: https://ssrn.com/abstract=4376796.

Bordalo P., Gennaioli N., Ma Y. and Shleifer A. (2020) “Overreaction in Macroeconomic Expectations”.
American Economic Review Vol. 110(9), pp. 2748–82.

Boysel S. and Vaughan D. (2019) fredr: An R Client for the ’FRED’ API. R package version 1.0.0.9000.

Breitenlechner M. (2018) An Update of Romer and Romer (2004) Narrative U.S. Monetary Policy Shocks up
to 2012Q4. Online Notes (available here https://eeecon.uibk.ac.at/ breitenlechner/data/UpdateRR04.pdf.

Breitenlechner M., Georgiadis G. and Schumann B. (2022) “What Goes Around Comes Around: How
Large Are Spillbacks from US Monetary Policy?” Journal of Monetary Economics Vol. 131, pp. 45–60.

Caldara D., Fuentes-Albero C., Gilchrist S. and Zakrajšek E. (2016) “The Macroeconomic Impact of
Financial and Uncertainty Shocks”. European Economic Review Vol. 88, pp. 185–207.

Carriero A., Chan J., Clark T E. and Marcellino M. (2022) “Corrigendum to “Large Bayesian Vector
Autoregressions with Stochastic Volatility and Non-Conjugate Priors”[J. Econometrics 212 (1)(2019)
137–154]”. Journal of Econometrics Vol. 227(2), pp. 506–512.

Carriero A., Clark T E. and Marcellino M. (2019) “Large Bayesian vector autoregressions with stochastic
volatility and non-conjugate priors”. Journal of Econometrics Vol. 212(1), pp. 137–154.

Carvalho C M., Polson N G. and Scott J G. (2010) “The Horseshoe Estimator for Sparse Signals”.
Biometrika Vol. 97(2), pp. 465–480.

Center for Research in Security Prices . (2022) Annual Update 1926-2022. https://wrds- www.
wharton.upenn.edu/pages/get-data/center-research-security-prices-crsp/. Accessed
from Wharton Research Data Services: 2022-05-22.

Chan J C. (2022) “Asymmetric Conjugate Priors for Large Bayesian VARs”. Quantitative Economics Vol.
13(3), pp. 1145–1169.

Chan J C. and Eisenstat E. (2018) “Bayesian Model Comparison for Time-Varying Parameter VARs with
Stochastic Volatility”. Journal of Applied Econometrics Vol. 33(4), pp. 509–532.

Chipman H A., George E I. and McCulloch R E. (2010) “BART: Bayesian Additive Regression Trees”.
Annals of Applied Statistics Vol. 4(1), pp. 266 –298.

Data F R E. (2022) Federal Reserve Economic Data Base. https://fred.stlouisfed.org. Accessed:
2022-05-01.

86

https://wrds-www.wharton.upenn.edu/pages/get-data/center-research-security-prices-crsp/
https://wrds-www.wharton.upenn.edu/pages/get-data/center-research-security-prices-crsp/
https://fred.stlouisfed.org


Doan T., Litterman R. and Sims C. (1984) “Forecasting and Conditional Projection using Realistic Prior
Distributions”. Econometric Reviews Vol. 3(1), pp. 1–100.

Fama E F. and French K R. (1992) “The Cross-Section of Expected Stock Returns”. Journal of Finance
Vol. 47(2), pp. 427–465.

Fama E F. and French K R. (1993) “Common risk factors in the returns on stocks and bonds”. Journal of
Financial Economics Vol. 33(1), pp. 3–56.

Federal Reserve Philadelphia . (2022) Real-Time Data Set for Macroeconomicsts. https : / / www .
philadelphiafed.org/surveys-and-data/real-time-data-research/real-time-data-
set-full-time-series-history. Accessed: 2022-05-10.

French K. (2022) Research Returns Data (1926-2022). https://mba.tuck.dartmouth.edu/pages/
faculty/ken.french/data_library.html. Accessed: 2022-05-22.

Geweke J. et al. (1991) Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of
Posterior Moments. Vol. 196. Federal Reserve Bank of Minneapolis, Research Department Minneapolis,
MN.

Gilchrist S. and Zakrajšek E. (2012) “Credit Spreads and Business Cycle Fluctuations”. American Economic
Review Vol. 102(4), pp. 1692–1720.

Huang D., Jiang F. and Tong G. (2018) Real Time Macro Factors in Bond Risk Premium. Tech. rep. Lee
Kong Chian School of Business.

Jacquier E., Polson N G. and Rossi P E. (2002) “Bayesian Analysis of Stochastic Volatility Models”.
Journal of Business & Economic Statistics Vol. 20(1), pp. 69–87.

Jarociński M. and Karadi P. (2020) “Deconstructing Monetary Policy Surprises – The Role of Information
Shocks”. American Economic Journal: Macroeconomics Vol. 12(2), pp. 1–43.

Jurado K., Ludvigson S C. and Ng S. (2015) “Measuring Uncertainty”. American Economic Review Vol.
105(3), pp. 1177–1216.

Känzig D R. (2021) “The Macroeconomic Effects of Oil Supply News: Evidence from OPEC Announce-
ments”. American Economic Review Vol. 111(4), pp. 1092–1125.

Kapelner A. and Bleich J. (2016) “bartMachine: Machine Learning with Bayesian Additive Regression
Trees”. Journal of Statistical Software Vol. 70(4), pp. 1–40.

Kastner G. (2016) “Dealing with Stochastic Volatility in Time Series Using the R Package stochvol”. Journal
of Statistical Software Vol. 69(5), pp. 1–30.

Kastner G. and Frühwirth-Schnatter S. (2014) “Ancillarity-Sufficiency Interweaving Strategy (ASIS) for
Boosting MCMC Estimation of Stochastic Volatility Models”. Computational Statistics & Data Analysis
Vol. 76, pp. 408–423.

Kilian L. (2009) “Not All Oil Price Shocks are Alike: Disentangling Demand and Supply Shocks in the
Crude Oil Market”. American Economic Review Vol. 99(3), pp. 1053–69.

Kim S., Shephard N. and Chib S. (1998) “Stochastic Volatility: Likelihood Inference and Comparison with
ARCH Models”. Review of Economic Studies Vol. 65(3), pp. 361–393.

Kuhn M. (2022) caret: Classification and Regression Training. R package version 6.0-92.

Leeper E M. and Zha T. (2003) “Modest Policy Interventions”. Journal of Monetary Economics Vol. 50(8),
pp. 1673–1700.

87

https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/real-time-data-set-full-time-series-history
https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/real-time-data-set-full-time-series-history
https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/real-time-data-set-full-time-series-history
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


Litterman R B. (1986) “Forecasting with Bayesian vector autoregressions—five years of experience”.
Journal of Business & Economic Statistics Vol. 4(1), pp. 25–38.

Lucas R E. (1976) “Econometric policy evaluation: A critique”. Carnegie-Rochester Conference Series on
Public Policy Vol. 1, pp. 19–46.

Ludvigson S C., Ma S. and Ng S. (2021) “Uncertainty and business cycles: exogenous impulse or endogenous
response?” American Economic Journal: Macroeconomics Vol. 13(4), pp. 369–410.

Makalic E. and Schmidt D F. (2015) “A Simple Sampler for the Horseshoe Estimator”. IEEE Signal
Processing Letters Vol. 23(1), pp. 179–182.

Miranda-Agrippino S. and Ricco G. (2021) “The Transmission of Monetary Policy Shocks”. American
Economic Journal: Macroeconomics Vol. 13(3), pp. 74–107.

Raftery A E. and Lewis S M. (1992) “[Practical Markov Chain Monte Carlo]: Comment: One Long Run
with Diagnostics: Implementation Strategies for Markov Chain Monte Carlo”. Statistical Science Vol.
7(4), pp. 493–497.

Romer C D. and Romer D H. (2004) “A New Measure of Monetary Shocks: Derivation and Implications”.
American Economic Review Vol. 94(4), pp. 1055–1084.

Romer C D. and Romer D H. (2010) “The Macroeconomic Effects of Tax Changes: Estimates Based on a
New Measure of Fiscal Shocks”. American Economic Review Vol. 100(3), pp. 763–801.

Shiller R J. (2022) Online Data Robert Shiller (1890-2022). http://www.econ.yale.edu/~shiller/
data.htm. Accessed: 2022-05-23.

Sims C A. and Zha T. (1998) “Bayesian Methods for Dynamic Multivariate Models”. International Economic
Review, pp. 949–968.

Waggoner D F. and Zha T. (1999) “Conditional Forecasts in Dynamic Multivariate Models”. Review of
Economics and Statistics Vol. 81(4), pp. 639–651.

Zou H. and Hastie T. (2005) “Regularization and Variable Selection via the Elastic Net”. Journal of the
Royal Statistical Society: Series B (Statistical Methodology) Vol. 67(2), pp. 301–320.

88

http://www.econ.yale.edu/~shiller/data.htm
http://www.econ.yale.edu/~shiller/data.htm

	Introduction
	Related Literature
	Belief Formation on Financial Markets
	Reaction to Incoming News
	A Model of Private and Public Signals with Diagnostic Expectations

	Measuring Belief Distortions
	Creating a Machine Benchmark
	Construction of the Belief Distortion Series

	Dynamic Responses to a Financial Shock
	Econometric Approach
	Impulse Response Analysis
	Counterfactual Experiment
	Quantitative Importance
	Reaction of Survey Forecast Errors
	Sensitivity Analysis

	Concluding Remarks
	Data
	Survey Data
	Macroeconomic Data
	Real-Time Macroeconomic Data
	Monthly Financial Data

	Propositions and Proofs
	Estimation of the Machine Efficient Benchmark
	Dynamic Factor Estimation
	Bayesian Shrinkage Estimator
	Elastic Net Estimator
	Bayesian Additive Regression Trees

	Estimation of the Macroeconomic Model
	Details on Structural Scenario Analysis Counterfactuals
	Restrictions in the VAR
	How Plausible is the Counterfactual?
	Additional Results

	Diagnostics of the Belief Distortion Series
	Convergence Diagnostics
	Additional Results: Forecasting
	Additional Results: Macroeconomic Model

